D-Alanine (BioDeep_00000014410)
Main id: BioDeep_00000404106
Secondary id: BioDeep_00000399983
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H7NO2 (89.0476762)
中文名称: D-丙氨酸
谱图信息:
最多检出来源 () 0%
Last reviewed on 2024-09-13.
Cite this Page
D-Alanine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/d-alanine (retrieved
2024-11-09) (BioDeep RN: BioDeep_00000014410). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)([C@@H](C)N)O
InChI: InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m1/s1
描述信息
Alanine is a nonessential amino acid made in the body from the conversion of the carbohydrate pyruvate or the breakdown of DNA and the dipeptides carnosine and anserine. It is highly concentrated in muscle and is one of the most important amino acids released by muscle, functioning as a major energy source. Plasma alanine is often decreased when the BCAA (Branched Chain Amino Acids) are deficient. This finding may relate to muscle metabolism. Alanine is highly concentrated in meat products and other high-protein foods like wheat germ and cottage cheese. Alanine is an important participant as well as regulator in glucose metabolism. Alanine levels parallel blood sugar levels in both diabetes and hypoglycemia, and alanine reduces both severe hypoglycemia and the ketosis of diabetes. It is an important amino acid for lymphocyte reproduction and immunity. Alanine therapy has helped dissolve kidney stones in experimental animals. Normal alanine metabolism, like that of other amino acids, is highly dependent upon enzymes that contain vitamin B6. Alanine, like GABA, taurine and glycine, is an inhibitory neurotransmitter in the brain. Alanine can be found in some Gram-positive bacteria (PMID:24752840).
Amino acids are one of the most important molecules in living organisms, and most of them have a chiral carbon at a -position. In the higher animals, a large part of the naturally occurring amino acids is the L-form, and the stereoisomers (D-amino acids) had been believed to be rare. However, several D-amino acids have been found in mammals including humans, and their distributions, functions and origins have gradually been clarified. The D-alanine (D-Ala) amounts have also been reported to change in the case of diseases. Proteins of the frontal lobe white and gray matter of human brains, both normal and Alzheimer subjects, contain D-alanine at concentrations between 0.50 and 1.28 mumol/g of wet tissue, 50-70-times lower than the concentration of L-alanine. D-Alanine have been detected in the sera of both normal subjects and patients with renal dysfunction, and their concentrations were higher in the patients than in the normal subjects. (PMID: 16141519, 1450921, 8535409, 1426150, 1933416) [HMDB]
KEIO_ID A011
D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR.
D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR.
同义名列表
28 个代谢物同义名
D-alpha-Aminopropionic acid; (2R)-2-aminopropanoic acid; (2R)-2-Aminopropionic acid; (R)-2-Aminopropionic acid; (R)-2-Aminopropanoic acid; D-Α-aminopropionic acid; D-alpha-Aminopropionate; D-a-Aminopropionic acid; D-2-Aminopropionic acid; (2R)-2-Aminopropanoate; (R)-2-Aminopropanoate; D-Α-aminopropionate; D-a-Aminopropionate; D-2-Aminopropionate; D(-)-alpha-Alanine; D-alpha-Alanine; D(-)-a -Alanine; D(-)-Α-alanine; D-(-)-Alanine; (R)-Alanine; D-a-Alanine; D-Α-alanine; D-Alanine; D-Alanin; Alanine; D-Ala; DAL; Ba 2776
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:15570
- KEGG: C00133
- PubChem: 71080
- HMDB: HMDB0001310
- Metlin: METLIN58035
- DrugBank: DB01786
- ChEMBL: CHEMBL66693
- Wikipedia: Alanine
- MetaCyc: D-ALANINE
- KNApSAcK: C00019654
- foodb: FDB022546
- chemspider: 64234
- CAS: 338-69-2
- MoNA: KO000019
- MoNA: KO000020
- MoNA: KO002052
- MoNA: KO002048
- MoNA: KO002049
- MoNA: KO002050
- MoNA: KO002051
- PubChem: 3433
- PDB-CCD: DAL
- 3DMET: B00036
- NIKKAJI: J9.190A
- RefMet: D-Alanine
- medchemexpress: HY-41700
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-335
分类词条
相关代谢途径
Reactome(0)
BioCyc(4)
PlantCyc(0)
代谢反应
246 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- peptidoglycan and lipid A precursor biosynthesis:
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- peptidoglycan biosynthesis I (meso-diaminopimelate containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- superpathway of alanine biosynthesis:
pyruvate + val ⟶ 2-oxoisovalerate + ala
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-DAP-containing):
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- alanine biosynthesis I:
pyruvate + val ⟶ 2-oxoisovalerate + ala
WikiPathways(2)
- Metabolism overview:
NH3 ⟶ Glutamic acid
- Peptidoglycan cytoplasmic synthesis and recycling pathways:
D-glucosamine-6-phosphate ⟶ Fructose-6-phosphate
Plant Reactome(231)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Ala ⟶ ADP + D-alanyl-D-alanine + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
ATP + Glycerol ⟶ ADP + G3P
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + L-Ala + UDP-N-acetylmuramate ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanine
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + D-Glu + UDP-N-acetylmuramoyl-L-alanine ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanyl-D-glutamate
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(8)
- D-Alanine Metabolism:
L-Alanine ⟶ D-Alanine
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- D-Alanine Metabolism:
L-Alanine ⟶ D-Alanine
- L-Alanine Metabolism:
L-Valine + Pyruvic acid ⟶ -Ketoisovaleric acid + L-Alanine
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
PharmGKB(0)
4 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kimberly N Karin, Mohammed A Mustafa, Justin L Poklis, Belle Buzzi, Joel E Schlosburg, Linda Parker, M Imad Damaj, Aron H Lichtman. N-oleoyl alanine attenuates nicotine reward and spontaneous nicotine withdrawal in mice.
Drug and alcohol dependence.
2024 Jun; 259(?):111276. doi:
10.1016/j.drugalcdep.2024.111276
. [PMID: 38676968] - Elisa de Lazzari, Eugenia B Negredo, Pere Domingo, Juan M Tiraboschi, Esteve Ribera, Nadia Abdulghani, Verònica Alba, Salvador Fernández-Arroyo, Consuelo Viladés, Joaquim Peraire, Jose M Gatell, Jose L Blanco, Francesc Vidal, Anna Rull, Esteban Martinez. Multiomics plasma effects of switching from triple antiretroviral regimens to dolutegravir plus lamivudine.
The Journal of antimicrobial chemotherapy.
2024 May; 79(5):1133-1141. doi:
10.1093/jac/dkae083
. [PMID: 38546974] - Dathan M Byonanebye, Mark N Polizzotto, Fernando Maltez, Andri Rauch, Katharina Grabmeier-Pfistershammer, Ferdinand Wit, Stéphane De Wit, Antonella Castagna, Antonella d'Arminio Monforte, Cristina Mussini, Jan-Christian Wasmuth, Eric Fontas, Irene Abela, Mario Sarcletti, Loveleen Bansi-Matharu, Nadine Jaschinski, Lars Peters, Sean R Hosein, Vani Vannappagari, Cal Cohen, Emiliano Bissio, Amanda Mocroft, Matthew Law, Lene Ryom, Kathy Petoumenos. Associations between change in BMI and the risk of hypertension and dyslipidaemia in people receiving integrase strand-transfer inhibitors, tenofovir alafenamide, or both compared with other contemporary antiretroviral regimens: a multicentre, prospective observational study from the RESPOND consortium cohorts.
The lancet. HIV.
2024 May; 11(5):e321-e332. doi:
10.1016/s2352-3018(23)00328-4
. [PMID: 38621392] - Setu Bazie Tagele, Emma W Gachomo. Evaluating the effects of mefenoxam on taxonomic and functional dynamics of nontarget fungal communities during carrot cultivation.
Scientific reports.
2024 04; 14(1):9867. doi:
10.1038/s41598-024-59587-2
. [PMID: 38684826] - Xiaogang Li, Zhuoling An, Aimin Yao, Rui Li, Suhan Zhang, Songlin Yu, Liangkun Ma, Yanping Liu. Targeted metabolomics profiling in pregnancy associated with vitamin D deficiency.
BMC pregnancy and childbirth.
2024 Apr; 24(1):295. doi:
10.1186/s12884-024-06454-7
. [PMID: 38643102] - Wenbo Sun, Dan Xu, YanXing Yang, Linfei Wen, Hanjiang Yu, Yaowen Xing, Xiaopeng Song, Huan Li, Haibo Xu. Improved Detection of Target Metabolites in Brain Tumors with Intermediate TE, High SNR, and High Bandwidth Spin-Echo Sequence at 5T.
AJNR. American journal of neuroradiology.
2024 Apr; 45(4):461-467. doi:
10.3174/ajnr.a8150
. [PMID: 38453417] - Jen-Yu Hsu, Hsin-Yun Sun, Ling-Ya Chen, Sui-Yuan Chang, Yu-Chung Chuang, Yu-Shan Huang, Yi-Ching Su, Wen-Chun Liu, Chien-Ching Hung. Weight and metabolic changes among virally suppressed people with HIV who switched to co-formulated bictegravir/emtricitabine/tenofovir alafenamide.
Journal of global antimicrobial resistance.
2024 Mar; 36(?):426-435. doi:
10.1016/j.jgar.2023.10.012
. [PMID: 37923129] - Jee Hoon Park, Rachel E Reviello, Patrick J Loll. Crystal structure of vancomycin bound to the resistance determinant D-alanine-D-serine.
IUCrJ.
2024 Mar; ?(?):. doi:
10.1107/s2052252524000289
. [PMID: 38277167] - Al Zahraa G Al Ashmawy, Gehan F Balata. Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: A potential subcutaneous injection for coronavirus treatment.
Colloids and surfaces. B, Biointerfaces.
2024 Feb; 234(?):113703. doi:
10.1016/j.colsurfb.2023.113703
. [PMID: 38096607] - Hyeyeon Hong, Won-Mook Choi, Danbi Lee, Ju Hyun Shim, Kang Mo Kim, Young-Suk Lim, Han Chu Lee, Jonggi Choi. Cardiovascular risk in chronic hepatitis B patients treated with tenofovir disoproxil fumarate or tenofovir alafenamide.
Clinical and molecular hepatology.
2024 Jan; 30(1):49-63. doi:
10.3350/cmh.2023.0328
. [PMID: 37981763] - Wan-Chen Wu, I-Hsuan Chen, Pei-Yu Hou, Lan-Hui Wang, Ching-Hsiu Tsai, Chi-Ping Cheng. The phosphorylation of the movement protein TGBp1 regulates the accumulation of the Bamboo mosaic virus.
The Journal of general virology.
2024 01; 105(1):. doi:
10.1099/jgv.0.001945
. [PMID: 38189334] - Nisreen A Al-Quraan, Nezar H Samarah, Ayah A Tanash. Effect of drought stress on wheat (Triticum durum) growth and metabolism: insight from GABA shunt, reactive oxygen species and dehydrin genes expression.
Functional plant biology : FPB.
2024 01; 51(1):NULL. doi:
10.1071/fp22177
. [PMID: 36346967] - Yi Shen, Yi-Qi Sun, He-Ming Li, Quan-Long Zhang, Qi-Ming Zhao, Jin-Long Xu, Lu-Ping Qin, Qiao-Yan Zhang. [UPLC-Q-TOF-MS-based metabolomics reveals mechanism of Morinda officinalis iridoid glycosides in treating rheumatoid arthritis and bone loss].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Jan; 49(2):453-460. doi:
10.19540/j.cnki.cjcmm.20230914.705
. [PMID: 38403321] - Jing Wu, Shaoqian Deng, Xinyue Yu, Yanlin Wu, Xiaoyi Hua, Zunjian Zhang, Yin Huang. Identify production area, growth mode, species, and grade of Astragali Radix using metabolomics "big data" and machine learning.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 123(?):155201. doi:
10.1016/j.phymed.2023.155201
. [PMID: 37976693] - Scott K Fung, Calvin Q Pan, Grace Lai-Hung Wong, Wai-Kay Seto, Sang Hoon Ahn, Chi-Yi Chen, Hie-Won L Hann, Maciej S Jablkowski, Yoon Jun Kim, Cihan Yurdaydin, Cheng-Yuan Peng, Tuan Nguyen, Hiroshi Yatsuhashi, John F Flaherty, Leland J Yee, Frida Abramov, Hongyuan Wang, Dzhamal Abdurakhmanov, Young-Suk Lim, Maria Buti. Atherosclerotic cardiovascular disease risk profile of patients with chronic hepatitis B treated with tenofovir alafenamide or tenofovir disoproxil fumarate for 96 weeks.
Alimentary pharmacology & therapeutics.
2024 Jan; 59(2):217-229. doi:
10.1111/apt.17764
. [PMID: 37905449] - Pin-Nan Cheng, I-Cher Feng, Jyh-Jou Chen, Hsing-Tao Kuo, Pei-Lun Lee, Ming-Lung Yu, Yen-Cheng Chiu, Hung-Chih Chiu, Shih-Chieh Chien, Pei-Jer Chen, Chun-Jen Liu. Body weight increase and metabolic derangements after tenofovir disoproxil fumarate switch to tenofovir alafenamide in patients with chronic hepatitis B.
Alimentary pharmacology & therapeutics.
2024 Jan; 59(2):230-238. doi:
10.1111/apt.17765
. [PMID: 37845815] - Suvi E Laamanen, Aino-Maija Eloranta, Eero A Haapala, Taisa Sallinen, Ursula Schwab, Timo A Lakka. Associations of diet quality and food consumption with serum biomarkers for lipid and amino acid metabolism in Finnish children: the PANIC study.
European journal of nutrition.
2023 Dec; ?(?):. doi:
10.1007/s00394-023-03293-8
. [PMID: 38127151] - Lin Gan, Xiaoxin Xie, Yanhua Fu, Yebing Song, Chunli Song, Tingting Ren, Hai Long. Efficacy and safety of bictegravir/emtricitabine/tenofovir alafenamide fumarate for adult patients with human immunodeficiency virus-1 in China: a retrospective real-world cohort study.
Expert review of anti-infective therapy.
2023 Dec; ?(?):1-7. doi:
10.1080/14787210.2023.2292544
. [PMID: 38058002] - Geeisy Angela Cid, Davide Francioli, Steffen Kolb, Yudelsy Antonia Tandron Moya, Nicolaus von Wirén, Mohammad-Reza Hajirezaei. Elucidating the systemic response of wheat plants under waterlogging based on transcriptomic and metabolic approaches.
Journal of experimental botany.
2023 Nov; ?(?):. doi:
10.1093/jxb/erad453
. [PMID: 38014629] - D Wilkinson, I J Gallagher, A McNelly, D E Bear, N Hart, H E Montgomery, A Le Guennec, M R Conte, T Francis, S D R Harridge, P J Atherton, Z A Puthucheary. The metabolic effects of intermittent versus continuous feeding in critically ill patients.
Scientific reports.
2023 11; 13(1):19508. doi:
10.1038/s41598-023-46490-5
. [PMID: 37945671] - Wenjie Li, Wei Wang. Decoding the genetic links between serum lipidomic profile, amino acid biomarkers, and programmed cell death protein-1/programmed cell death-ligand-1.
Cancer immunology, immunotherapy : CII.
2023 Oct; 72(10):3395-3399. doi:
10.1007/s00262-023-03501-8
. [PMID: 37498324] - Jie Chen, Shao Bai Huang, Xue Wang, Li Zhen Huang, Cheng Gao, Xin-Yuan Huang, Fang-Jie Zhao. IAR4 mutation enhances cadmium toxicity by disturbing auxin homeostasis in Arabidopsis thaliana.
Journal of experimental botany.
2023 Sep; ?(?):. doi:
10.1093/jxb/erad366
. [PMID: 37721748] - Nicole Canon, Catherine H Schein, Werner Braun, Surendra S Negi, Xueni Chen, Michael D Kulis, Edwin H Kim, Vidya Pathy, Marina Pozzoli, Weimin Liu, Stephen C Dreskin. Alanine Scanning of the Unstructured Region of Ara h 2 and of a Related Mimotope Reveals Critical Amino Acids for IgE Binding.
Molecular nutrition & food research.
2023 Sep; ?(?):e2300134. doi:
10.1002/mnfr.202300134
. [PMID: 37706599] - Juan Moreno-Vedia, Dídac Llop, Ricardo Rodríguez-Calvo, Núria Plana, Núria Amigó, Roser Rosales, Yaiza Esteban, Josefa Girona, Lluís Masana, Daiana Ibarretxe. Serum branch-chained amino acids are increased in type 2 diabetes and associated with atherosclerotic cardiovascular disease.
Cardiovascular diabetology.
2023 Sep; 22(1):249. doi:
10.1186/s12933-023-01958-6
. [PMID: 37710233] - Xi Meng, Guoqi Yu, Tingyu Luo, Ruiyuan Zhang, Jun Zhang, Yongjie Liu. Transcriptomics integrated with metabolomics reveals perfluorobutane sulfonate (PFBS) exposure effect during pregnancy and lactation on lipid metabolism in rat offspring.
Chemosphere.
2023 Sep; 341(?):140120. doi:
10.1016/j.chemosphere.2023.140120
. [PMID: 37696479] - Hong Wang, Jinyang Wang, Mouliang Xiao, Tida Ge, Anna Gunina, Davey L Jones. The fate of amino acid and peptide as affected by soil depth and fertilization regime in subtropical paddies.
The Science of the total environment.
2023 Sep; 889(?):164245. doi:
10.1016/j.scitotenv.2023.164245
. [PMID: 37211099] - Xin Huang, Jie V Zhao. The associations of genetically predicted plasma alanine with coronary artery disease (CAD) and CAD risk factors: a Mendelian randomization study.
The American journal of clinical nutrition.
2023 Aug; ?(?):. doi:
10.1016/j.ajcnut.2023.08.011
. [PMID: 37640107] - Yan Lu, Peng Xiang, Shuqing Zhang, Zhiguo Lu, Zhidong Zhou, Yunlong Yin, Jianfeng Hua, Qin Shi, Wanwen Yu, Chaoguang Yu. Physiological and transcriptional regulation in Taxodium hybrid 'Zhongshanshan' leaves in acclimation to prolonged partial submergence.
Planta.
2023 Aug; 258(3):66. doi:
10.1007/s00425-023-04225-w
. [PMID: 37592053] - Eui Gwon Hwang, Eun-Ae Jung, Jeong-Ju Yoo, Sang Gyune Kim, Young Seok Kim. Risk of dyslipidemia in chronic hepatitis B patients taking tenofovir alafenamide: a systematic review and meta-analysis.
Hepatology international.
2023 Aug; 17(4):860-869. doi:
10.1007/s12072-023-10528-7
. [PMID: 37099248] - Victor Silva da Fonsêca, Valeria de Cassia Goncalves, Mario Augusto Izidoro, Antônio-Carlos Guimarães de Almeida, Fernando Luiz Affonso Fonseca, Fulvio Alexandre Scorza, Josef Finsterer, Carla Alessandra Scorza. Parkinson's Disease and the Heart: Studying Cardiac Metabolism in the 6-Hydroxydopamine Model.
International journal of molecular sciences.
2023 Jul; 24(15):. doi:
10.3390/ijms241512202
. [PMID: 37569578] - Marcus V Marin, Juliana S Baggio, Youngjae Oh, Hyeondae Han, Saket Chandra, Nan-Yi Wang, Seonghee Lee, Natalia A Peres. Identification of sequence mutations in Phytophthora cactorum genome associated with mefenoxam resistance and development of a molecular assay for the mutant detection in strawberry (F. × ananassa).
Scientific reports.
2023 05; 13(1):7385. doi:
10.1038/s41598-023-34271-z
. [PMID: 37149656] - Marta Mendes Costa, Alda Pereira Da Silva, Carolina Santos, Joana Ferreira, Mário Rui Mascarenhas, Manuel Bicho, Ana Paula Barbosa. Influence of the TAS2R38 Gene Single Nucleotide Polymorphisms in Metabolism and Anthropometry in Thyroid Dysfunction.
Nutrients.
2023 May; 15(9):. doi:
10.3390/nu15092214
. [PMID: 37432370] - Charlie Guittin, Faïza Maçna, Adeline Barreau, Xavier Poitou, Jean-Marie Sablayrolles, Jean-Roch Mouret, Vincent Farines. The aromatic profile of wine distillates from Ugni blanc grape musts is influenced by the nitrogen nutrition (organic vs. inorganic) of Saccharomyces cerevisiae.
Food microbiology.
2023 May; 111(?):104193. doi:
10.1016/j.fm.2022.104193
. [PMID: 36681397] - Yan Huang, Yezi Kong, Bingyu Shen, Bowen Li, Juan J Loor, Panpan Tan, Bo Wei, Linshan Mei, Zixin Zhang, Chenxu Zhao, Xiaoyan Zhu, Simeng Qi, Jianguo Wang. Untargeted metabolomics and lipidomics to assess plasma metabolite changes in dairy goats with subclinical hyperketonemia.
Journal of dairy science.
2023 Apr; ?(?):. doi:
10.3168/jds.2022-22812
. [PMID: 37028962] - Parisa Mansouri Rad, Leila Rahbarnia, Azam Safary, Azizeh ShadiDizaji, Zahra Maani. The Synthetic Antimicrobial Peptide Derived From Melittin Displays Low Toxicity and Anti-infectious Properties.
Probiotics and antimicrobial proteins.
2023 Mar; ?(?):. doi:
10.1007/s12602-023-10066-6
. [PMID: 36988897] - Courtney R Green, Roberto Bonelli, Brendan R E Ansell, Simone Tzaridis, Michal K Handzlik, Grace H McGregor, Barbara Hart, Jennifer Trombley, Mary M Reilly, Paul S Bernstein, Catherine Egan, Marcus Fruttiger, Martina Wallace, Melanie Bahlo, Martin Friedlander, Christian M Metallo, Marin L Gantner. Divergent amino acid and sphingolipid metabolism in patients with inherited neuro-retinal disease.
Molecular metabolism.
2023 Mar; ?(?):101716. doi:
10.1016/j.molmet.2023.101716
. [PMID: 36997154] - Zhenyu Zou, Meiyun Lin, Peihua Shen, Yi Guan. Alanine-Dependent TCA Cycle Promotion Restores the Zhongshengmycin-Susceptibility in Xanthomonas oryzae.
International journal of molecular sciences.
2023 Feb; 24(3):. doi:
10.3390/ijms24033004
. [PMID: 36769324] - Nathalie Lacrampe, Sophie Colombié, Doriane Dumont, Philippe Nicot, François Lecompte, Raphaël Lugan. Nitrogen-mediated metabolic patterns of susceptibility to Botrytis cinerea infection in tomato (Solanum lycopersicum) stems.
Planta.
2023 Jan; 257(2):41. doi:
10.1007/s00425-022-04065-0
. [PMID: 36680621] - Feng Huang, Tong Zhang, Bin Li, Shaosong Wang, Chang Xu, Caihua Huang, Donghai Lin. NMR-based metabolomic analysis for the effects of moxibustion on imiquimod-induced psoriatic mice.
Journal of ethnopharmacology.
2023 Jan; 300(?):115626. doi:
10.1016/j.jep.2022.115626
. [PMID: 36049653] - Ying He, Bang Cheng, Bing-Jian Guo, Zheng Huang, Jing-Hua Qin, Qian-Yi Wang, Lin-Lin Feng, Yun-Yuan Nong, Dan Zhu, Hong-Wei Guo, Zhi-Heng Su. Metabonomics and 16S rRNA gene sequencing to study the therapeutic mechanism of Danggui Sini decoction on collagen-induced rheumatoid arthritis rats with Cold Bi syndrome.
Journal of pharmaceutical and biomedical analysis.
2023 Jan; 222(?):115109. doi:
10.1016/j.jpba.2022.115109
. [PMID: 36270097] - Biao Jiang, Changmei Long, Yu Xu, Lizhen Han. Molecular mechanism of Tsukamurella tyrosinosolvens strain P9 in response to root exudates of peanut.
Archives of microbiology.
2023 Jan; 205(1):48. doi:
10.1007/s00203-022-03387-7
. [PMID: 36595098] - Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?.
Frontiers in endocrinology.
2023; 14(?):1274011. doi:
10.3389/fendo.2023.1274011
. [PMID: 37964971] - Nicola Squillace, Elena Ricci, Paolo Maggi, Lucia Taramasso, Barbara Menzaghi, Giuseppe Vittorio De Socio, Stefania Piconi, Benedetto Maurizio Celesia, Giancarlo Orofino, Eleonora Sarchi, Giovanni Francesco Pellicanò, Filomena Simeone, Laura Valsecchi, Alessandra Bandera, Giovanni Cenderello, Letizia Attala, Goffredo Angioni, Katia Falasca, Antonio Cascio, Olivia Bargiacchi, Antonio Di Biagio, Paolo Bonfanti. Real-life safety of Emtricitabine/Tenofovir Alafenamide/Bictegravir.
PloS one.
2023; 18(8):e0289132. doi:
10.1371/journal.pone.0289132
. [PMID: 37556481] - M S Sadak, B A Bakry, T M Abdel-Razik, R S Hanafy. Amino acids foliar application for maximizing growth, productivity and quality of peanut grown under sandy soil.
Brazilian journal of biology = Revista brasleira de biologia.
2023; 83(?):e256338. doi:
10.1590/1519-6984.256338
. [PMID: 36753149] - Mozhgan Hashemi, Ahmad Moieni, Mohammad Sadegh Sabet. Improving the isolated microspore culture in eggplant (Solanum melongena L.) with amino acid nutrition.
PloS one.
2023; 18(6):e0286809. doi:
10.1371/journal.pone.0286809
. [PMID: 37289731] - Kai-Yin Lo, Yi-Fang Tsai, Chun-Hua Hsu, Chia-Yin Lee. Functional Characterization and Structural Modeling of a Novel Glycine Oxidase from Variovorax paradoxus Iso1.
Applied and environmental microbiology.
2022 12; 88(23):e0107722. doi:
10.1128/aem.01077-22
. [PMID: 36377957] - Ifeanyi J Ezeonwumelu, Abduljalil M Mode, Umar F Magaji, Nnamdi A Nzoniwu, Muhamad H Tangaza, Fatima I Tanimu, Shamsudeen U Dandare. Coadministration of L-alanine and L-glutamine ameliorate blood glucose levels, biochemical indices and histological features in alloxan-induced diabetic rats.
Journal of food biochemistry.
2022 12; 46(12):e14420. doi:
10.1111/jfbc.14420
. [PMID: 36125865] - Seung-Cheol Lee, Fernando Arias-Mendoza, Sanjeev Chawla, Kavindra Nath, Jerry D Glickson. In-phase simultaneous spectral editing of lactate and alanine with suppression of J-coupled lipids by the modified selective multiple quantum coherence sequences.
Magnetic resonance imaging.
2022 12; 94(?):127-143. doi:
10.1016/j.mri.2022.08.020
. [PMID: 36089181] - Arif Sarowar, Carla S Coffin, Scott Fung, Alexander Wong, Karen Doucette, David Truong, Brian Conway, Sarah Haylock-Jacobs, Alnoor Ramji, Bettina E Hansen, Harry L A Janssen, Curtis Cooper. Brief Report: Effect of Antiretroviral Switch From Tenofovir Disoproxil fumarate to Tenofovir Alafenamide on Alanine Aminotransferase, Lipid Profiles, and Renal Function in HIV/HBV-Coinfected Individuals in a Nationwide Canadian Study.
Journal of acquired immune deficiency syndromes (1999).
2022 12; 91(4):368-372. doi:
10.1097/qai.0000000000003079
. [PMID: 36288543] - Qing-Qi Chang, Long Chen, Ya-Fang Liao, Chun-Lu Yuan, Dan-Dan Zhang. [Mechanism of timosaponin AⅢ in regulation of metabolism against glioblastoma growth].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Dec; 47(24):6679-6686. doi:
10.19540/j.cnki.cjcmm.20220728.401
. [PMID: 36604918] - Hussain Ahmad, Xinrui Zhao, Nisar Ahmad, Abbas Khan, Yuexin Jin, Jie Du, Xuewei Zheng, Li Zeng, Yanan Ouyang, Pengfei Yang, Meng Chen, Xiaoxue Li, Zhe Yang, Zhongmin Tian. Benincasa hispida extracts positively regulated high salt-induced hypertension in Dahl salt-sensitive rats: Impact on biochemical profile and metabolic patterns.
Journal of food biochemistry.
2022 12; 46(12):e14497. doi:
10.1111/jfbc.14497
. [PMID: 36314446] - Qiding Peng, Daoyong Yang, Ting Yang, Yongchao Cheng, Yufan Yang, Dehui Xi. Construction of full-length cDNA infectious clones of Chilli veinal mottle virus.
Virus research.
2022 12; 322(?):198948. doi:
10.1016/j.virusres.2022.198948
. [PMID: 36181976] - L A Kovalchuk, V A Mishchenko, L V Chernaya, V P Snit'ko, V N Bolshakov. Assessment of Seasonal Variability of the Spectrum of Free Amino Acids in the Blood Plasma of the Boreal Bat Species (Myotis dasycneme Boie, 1825) of the Ural Fauna.
Doklady. Biochemistry and biophysics.
2022 Dec; 507(1):268-272. doi:
10.1134/s1607672922060060
. [PMID: 36786984] - Linhao Xu, Jinping Cheng, Hua Jiang. Mutation of histone H3 serine 28 to alanine influences H3K27me3-mediated gene silencing in Arabidopsis thaliana.
Plant physiology.
2022 11; 190(4):2417-2429. doi:
10.1093/plphys/kiac409
. [PMID: 36053193] - Zhehua Zhang, Deying Chen, Jiong Yu, Xiaoling Su, Lanjuan Li. Metabolic perturbations in human hepatocytes induced by bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate exposure: Insights from high-coverage quantitative metabolomics.
Analytical biochemistry.
2022 11; 657(?):114887. doi:
10.1016/j.ab.2022.114887
. [PMID: 36150471] - Hongzhao Yuan, Zhen He, Xiangbi Chen, Tida Ge, Liping Zhang, Jiurong Wang. Rapid, sensitive analysis method for determining the nitrogen stable isotope ratio of total free amino acids in soil.
Rapid communications in mass spectrometry : RCM.
2022 Nov; 36(21):e9390. doi:
10.1002/rcm.9390
. [PMID: 36056455] - Can Si, Danqi Zeng, Zhenming Yu, Jaime A Teixeira da Silva, Jun Duan, Chunmei He, Jianxia Zhang. Transcriptomic and metabolomic analyses reveal the main metabolites in Dendrobium officinale leaves during the harvesting period.
Plant physiology and biochemistry : PPB.
2022 Nov; 190(?):24-34. doi:
10.1016/j.plaphy.2022.08.026
. [PMID: 36088784] - Hanxia Wang, Qiaoyun Ma, Fuhua Shan, Liping Tian, Jie Gong, Wei Quan, Weibing Yang, Qiling Hou, Fengting Zhang, Shengquan Zhang. Transcriptional regulation mechanism of wheat varieties with different nitrogen use efficiencies in response to nitrogen deficiency stress.
BMC genomics.
2022 Oct; 23(1):727. doi:
10.1186/s12864-022-08948-0
. [PMID: 36289540] - Sher Ali, Gul Badshah, Umar Ali, Muhammad Siddique Afridi, Anwar Shamim, Ajmir Khan, Frederico Luiz Felipe Soares, Leociley Rocha Alencar Menezes, Vanessa Theodoro Rezende, Andersson Barison, Carlos Augusto Fernandes de Oliveira, Fernando Gustavo Tonin. Leaf tissue metabolomics fingerprinting of Citronella gongonha Mart. by 1H HR-MAS NMR.
Scientific reports.
2022 10; 12(1):17624. doi:
10.1038/s41598-022-22708-w
. [PMID: 36271238] - Julia M T Ledderose, Jorge A Benitez, Amanda J Roberts, Rachel Reed, Willem Bintig, Matthew E Larkum, Robert N S Sachdev, Frank Furnari, Britta J Eickholt. The impact of phosphorylated PTEN at threonine 366 on cortical connectivity and behaviour.
Brain : a journal of neurology.
2022 10; 145(10):3608-3621. doi:
10.1093/brain/awac188
. [PMID: 35603900] - Gopal Peddinti, Hannu Hotti, Teemu H Teeri, Heiko Rischer. De novo transcriptome assembly of Conium maculatum L. to identify candidate genes for coniine biosynthesis.
Scientific reports.
2022 10; 12(1):17562. doi:
10.1038/s41598-022-21728-w
. [PMID: 36266299] - Eric Amenyogbe, Jun Luo, Wei-Jie Fu, Emmanuel Delwin Abarike, Zhong-Liang Wang, Jian-Sheng Huang, Christian Larbi Ayisi, Gang Chen. Effects of autochthonous strains mixture on gut microbiota and metabolic profile in cobia (Rachycentron canadum).
Scientific reports.
2022 10; 12(1):17410. doi:
10.1038/s41598-022-19663-x
. [PMID: 36258024] - Michael Noden, Jeremy Goodyear, Scott D Taylor. Effect of Lipid Length and Cationic Residues on the Antibacterial and Hemolytic Activities of Paenibacterin.
ACS infectious diseases.
2022 10; 8(10):2073-2083. doi:
10.1021/acsinfecdis.2c00157
. [PMID: 36083849] - Youjun Zhang, Alisdair R Fernie. Metabolite profiling of Arabidopsis mutants of lower glycolysis.
Scientific data.
2022 10; 9(1):614. doi:
10.1038/s41597-022-01673-z
. [PMID: 36220829] - Aradhana Mishra, Arpita Bhattacharya, Priyanka Chauhan, Shipra Pandey, Ashish Dwivedi. Phenotype microarray analysis reveals the biotransformation of Fusarium oxysporum f.sp. lycopersici influenced by Bacillus subtilis PBE-8 metabolites.
FEMS microbiology ecology.
2022 10; 98(10):. doi:
10.1093/femsec/fiac102
. [PMID: 36066920] - Chang Liu, Wenhao Jiang, Fangwei Yang, Yuliang Cheng, Yahui Guo, Weirong Yao, Yong Zhao, He Qian. The combination of microbiome and metabolome to analyze the cross-cooperation mechanism of Echinacea purpurea polysaccharide with the gut microbiota in vitro and in vivo.
Food & function.
2022 Oct; 13(19):10069-10082. doi:
10.1039/d2fo02336a
. [PMID: 36093868] - Danilo L Neves, Aiqin Wang, Japheth D Weems, Heather M Kelly, Daren S Mueller, Mark Farman, Carl A Bradley. Identification of Septoria glycines Isolates from Soybean with Resistance to Quinone Outside Inhibitor Fungicides.
Plant disease.
2022 Oct; 106(10):2631-2637. doi:
10.1094/pdis-08-21-1836-re
. [PMID: 35394334] - Zhiyuan Meng, Jiajia Cui, Li Liu, Chunmei Yang, Xin Bao, Jianjun Wang, Xiaojun Chen. Toxicity effects of chlorantraniliprole in zebrafish (Danio rerio) involving in liver function and metabolic phenotype.
Pesticide biochemistry and physiology.
2022 Oct; 187(?):105194. doi:
10.1016/j.pestbp.2022.105194
. [PMID: 36127066] - Antony Stalin, Ding Lin, Balakrishnan Senthamarai Kannan, Yue Feng, Yanjing Wang, Wei Zhao, Savarimuthu Ignacimuthu, Dong-Qing Wei, Yuan Chen. An in-silico approach to identify the potential hot spots in SARS-CoV-2 spike RBD to block the interaction with ACE2 receptor.
Journal of biomolecular structure & dynamics.
2022 10; 40(16):7408-7423. doi:
10.1080/07391102.2021.1897682
. [PMID: 33685364] - Thekla Cordes, Ramya S Kuna, Grace H McGregor, Sanika V Khare, Jivani Gengatharan, Thangaselvam Muthusamy, Christian M Metallo. 1-Deoxysphingolipid synthesis compromises anchorage-independent growth and plasma membrane endocytosis in cancer cells.
Journal of lipid research.
2022 Oct; 63(10):100281. doi:
10.1016/j.jlr.2022.100281
. [PMID: 36115594] - Yuan Kong, Chenyang Ji, Dong Guo, Rujian He, Meirong Zhao, Jun Fan. Triticonazole enantiomers induced enantioselective metabolic phenotypes in Fusarium graminearum and HepG2 cells.
Environmental science and pollution research international.
2022 Oct; 29(50):75978-75988. doi:
10.1007/s11356-022-21137-6
. [PMID: 35665887] - Liqin Sun, Yun He, Liumei Xu, Fang Zhao, Yang Zhou, Lukun Zhang, Qiaoli Peng, Haitao Zhang, Qiuyue Zhang, Tingzhi Cao, Ying Song, Siyuan Wang, Man Rao, Xinyun Jia, Xiaoning Liu, Jing Zhou, Bin Ju, Hui Wang, Jiaye Liu. Higher Risk of Dyslipidemia With Coformulated Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir Alafenamide than Efavirenz, Lamivudine, and Tenofovir Disoproxil Fumarate Among Antiretroviral-Naive People Living With HIV in China.
Journal of acquired immune deficiency syndromes (1999).
2022 10; 91(S1):S8-S15. doi:
10.1097/qai.0000000000003040
. [PMID: 36094509] - William Liu, Sarah Yu, Bingfang Yan. Effect of alcohol exposure on the efficacy and safety of tenofovir alafenamide fumarate, a major medicine against human immunodeficiency virus.
Biochemical pharmacology.
2022 10; 204(?):115224. doi:
10.1016/j.bcp.2022.115224
. [PMID: 36007574] - Olayemi Osiyemi, Stéphane De Wit, Faïza Ajana, Fiona Bisshop, Joaquín Portilla, Jean Pierre Routy, Christoph Wyen, Mounir Ait-Khaled, Peter Leone, Keith A Pappa, Ruolan Wang, Jonathan Wright, Nisha George, Brian Wynne, Michael Aboud, Jean van Wyk, Kimberly Y Smith. Efficacy and Safety of Switching to Dolutegravir/Lamivudine Versus Continuing a Tenofovir Alafenamide-Based 3- or 4-Drug Regimen for Maintenance of Virologic Suppression in Adults Living With Human Immunodeficiency Virus Type 1: Results Through Week 144 From the Phase 3, Noninferiority TANGO Randomized Trial.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2022 09; 75(6):975-986. doi:
10.1093/cid/ciac036
. [PMID: 35079789] - Heming Sui, Shiqi Wang, Gang Liu, Fei Meng, Zubing Cao, Yunhai Zhang. Effects of Heat Stress on Motion Characteristics and Metabolomic Profiles of Boar Spermatozoa.
Genes.
2022 09; 13(9):. doi:
10.3390/genes13091647
. [PMID: 36140814] - Jun-Kyu Byun, John A Vu, Siou-Luan He, Jyan-Chyun Jang, Karin Musier-Forsyth. Plant-exclusive domain of trans-editing enzyme ProXp-ala confers dimerization and enhanced tRNA binding.
The Journal of biological chemistry.
2022 09; 298(9):102255. doi:
10.1016/j.jbc.2022.102255
. [PMID: 35835222] - Ling Gao, Qiang Gu, Hong Wang, Xingkong Ma, Feng Xue, Xing Zhang, Jiachun Ge, Tao Ding, Weijian Shen. [Determination of free amino acids in Eriocheir sinensis by ultra-high performance liquid chromatography-high resolution mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):825-832. doi:
10.3724/sp.j.1123.2022.03027
. [PMID: 36156629] - Yali Wang, Haotian Wu, Siying Fei, Junzhe Zhang, Kun Hu. Characterizing the Mechanisms of Metalaxyl, Bronopol and Copper Sulfate against Saprolegnia parasitica Using Modern Transcriptomics.
Genes.
2022 08; 13(9):. doi:
10.3390/genes13091524
. [PMID: 36140692] - Natalia Krisanova, Natalia Pozdnyakova, Artem Pastukhov, Marina Dudarenko, Oleg Shatursky, Olena Gnatyuk, Uliana Afonina, Kyrylo Pyrshev, Galina Dovbeshko, Semen Yesylevskyy, Tatiana Borisova. Amphiphilic anti-SARS-CoV-2 drug remdesivir incorporates into the lipid bilayer and nerve terminal membranes influencing excitatory and inhibitory neurotransmission.
Biochimica et biophysica acta. Biomembranes.
2022 08; 1864(8):183945. doi:
10.1016/j.bbamem.2022.183945
. [PMID: 35461828] - Huoyong Jiang, Nengdang Jiang, Li Wang, Jingjing Guo, Kexin Chen, Yijun Dai. Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification.
Journal of applied microbiology.
2022 Aug; 133(2):311-322. doi:
10.1111/jam.15561
. [PMID: 35365856] - Meng Jiang, Shang Dai, Yun-Chao Zheng, Rui-Qing Li, Yuan-Yuan Tan, Gang Pan, Ian Max Møller, Shi-Yong Song, Jian-Zhong Huang, Qing-Yao Shu. An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2022 Aug; 135(8):2817-2831. doi:
10.1007/s00122-022-04151-7
. [PMID: 35779128] - Muhammad Nadeem-Ul-Haque, Anila Bashir, Humira Karim, Sadiq Noor Khan, Zafar Ali Shah, Almas Jabeen, Shaista Qayyum, A Ganesan, M Iqbal Choudhary, Farzana Shaheen. Synthesis of [1-8-NαC]-zanriorb A1, alanine-containing analogues, and their cytotoxic and anti-inflammatory activity.
Journal of peptide science : an official publication of the European Peptide Society.
2022 Aug; 28(8):e3405. doi:
10.1002/psc.3405
. [PMID: 35068012] - Amilcar Vargas, Pierce A Paul, Jonell Winger, Christine Susan Balk, Meredith Eyre, Bruce Clevinger, Sarah Noggle, Anne E Dorrance. Oxathiapiprolin Alone or Mixed with Metalaxyl Seed Treatment for Management of Soybean Seedling Diseases Caused by Species of Phytophthora, Phytopythium, and Pythium.
Plant disease.
2022 Aug; 106(8):2127-2137. doi:
10.1094/pdis-09-21-1952-re
. [PMID: 35133185] - Enhua Hao, Yini Li, Bing Guo, Xi Yang, Pengfei Lu, Haili Qiao. Key Residues Affecting Binding Affinity of Sirex noctilio Fabricius Odorant-Binding Protein (SnocOBP9) to Aggregation Pheromone.
International journal of molecular sciences.
2022 Jul; 23(15):. doi:
10.3390/ijms23158456
. [PMID: 35955589] - Huan-Ming Xiao, Mei-Jie Shi, Jun-Min Jiang, Gao-Shu Cai, Yu-Bao Xie, Guang-Jun Tian, Jing-Dong Xue, De-Wen Mao, Qin Li, Hong-Zhi Yang, Hui Guo, Chun-Liang Lei, Wei Lu, Liang Chen, Hua-Bao Liu, Jing Wang, Yue-Qiu Gao, Jie-Zhen Chen, Shu-Duo Wu, Hui-Jun Chen, Peng-Tao Zhao, Chao-Zhen Zhang, Wen-Wei Ou-Yang, Ze-Huai Wen, Xiao-Ling Chi. Efficacy and safety of AnluoHuaxian pills on chronic hepatitis B with normal or minimally elevated alanine transaminase and early liver fibrosis: A randomized controlled trial.
Journal of ethnopharmacology.
2022 Jul; 293(?):115210. doi:
10.1016/j.jep.2022.115210
. [PMID: 35398501] - Qianqian Zhang, Youmei Peng, Jiao Hou, Yanhong Chen, Bingjie Liu, Pinghu Zhang, Wenquan Yu, Junbiao Chang. An O-Benzyl Phosphonamidate Prodrug of Tenofovir for the Treatment of Hepatitis B Virus Infection.
Journal of medicinal chemistry.
2022 07; 65(13):9493-9505. doi:
10.1021/acs.jmedchem.2c00869
. [PMID: 35776695] - Ei Phyo Khaing, Victor Zhong, Sandeesha Kodru, Imre Vass, Julian J Eaton-Rye. Tyr244 of the D2 Protein Is Required for Correct Assembly and Operation of the Quinone-Iron-Bicarbonate Acceptor Complex of Photosystem II.
Biochemistry.
2022 07; 61(13):1298-1312. doi:
10.1021/acs.biochem.2c00164
. [PMID: 35699437] - Markus Fischer, Peter Müller, Holger A Scheidt, Meike Luck. Drug-Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers.
Biochemistry.
2022 Jul; 61(13):1392-1403. doi:
10.1021/acs.biochem.2c00042
. [PMID: 35731976] - Meng Yuan, Wenjuan Hu, Yingying Feng, Yue Tong, Xin Wang, Bo Tan, Hui Xu, Jia Liu. Development and validation of an LC-MS/MS method for simultaneous determination of remdesivir and its hydrolyzed metabolite and nucleoside, and its application in a pharmacokinetic study of normal and diabetic nephropathy mice.
Biomedical chromatography : BMC.
2022 Jul; 36(7):e5380. doi:
10.1002/bmc.5380
. [PMID: 35373846] - Karen Liebrenz, Romina Frare, Cristina Gómez, Cecilia Pascuan, Silvina Brambilla, Diego Soldini, Vanina Maguire, Alejandro Carrio, Oscar Ruiz, Wayne McCormick, Gabriela Soto, Nicolás Ayub. Multiple ways to evade the bacteriostatic action of glyphosate in rhizobia include the mutation of the conserved serine 90 of the nitrogenase subunit NifH to alanine.
Research in microbiology.
2022 Jul; 173(6-7):103952. doi:
10.1016/j.resmic.2022.103952
. [PMID: 35436545] - Ling Yang, I-Hsin Lin, Lie-Chwen Lin, Jeffrey W Dalley, Tung-Hu Tsai. Biotransformation and transplacental transfer of the anti-viral remdesivir and predominant metabolite, GS-441524 in pregnant rats.
EBioMedicine.
2022 Jul; 81(?):104095. doi:
10.1016/j.ebiom.2022.104095
. [PMID: 35671622] - Jihye Lim, Won-Mook Choi, Ju Hyun Shim, Danbi Lee, Kang Mo Kim, Young-Suk Lim, Han Chu Lee, Jonggi Choi. Efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate in treatment-naïve chronic hepatitis B.
Liver international : official journal of the International Association for the Study of the Liver.
2022 07; 42(7):1517-1527. doi:
10.1111/liv.15261
. [PMID: 35343041] - Eiichi Ogawa, Makoto Nakamuta, Toshimasa Koyanagi, Aritsune Ooho, Norihiro Furusyo, Eiji Kajiwara, Kazufumi Dohmen, Akira Kawano, Takeaki Satoh, Kazuhiro Takahashi, Koichi Azuma, Nobuyuki Yamashita, Naoki Yamashita, Rie Sugimoto, Hiromasa Amagase, Masami Kuniyoshi, Yasunori Ichiki, Chie Morita, Masaki Kato, Shinji Shimoda, Hideyuki Nomura, Jun Hayashi. Switching to tenofovir alafenamide for nucleos(t)ide analogue-experienced patients with chronic hepatitis B: Week 144 results from a real-world, multicentre cohort study.
Alimentary pharmacology & therapeutics.
2022 Jun; ?(?):. doi:
10.1111/apt.17107
. [PMID: 35735794] - Kai Juhani Kauppinen, Inka Aho, Jussi Sutinen. Switching from tenofovir alafenamide to tenofovir disoproxil fumarate improves lipid profile and protects from weight gain.
AIDS (London, England).
2022 Jun; ?(?):. doi:
10.1097/qad.0000000000003245
. [PMID: 35727143] - Mackenzie J Thompson, Jaimee A Domville, Claire H Edrington, Angelica Venes, Patrick M Giguère, John E Baenziger. Distinct functional roles for the M4 α-helix from each homologous subunit in the heteropentameric ligand-gated ion channel nAChR.
The Journal of biological chemistry.
2022 Jun; 298(7):102104. doi:
10.1016/j.jbc.2022.102104
. [PMID: 35679899] - Juliana González-Tobón, Richard Rabideau Childers, Alejandra Rodríguez, William Fry, Kevin L Myers, Jeremy R Thompson, Silvia Restrepo, Giovanna Danies. Searching for the Mechanism that Mediates Mefenoxam-Acquired Resistance in Phytophthora infestans and How It Is Regulated.
Phytopathology.
2022 May; 112(5):1118-1133. doi:
10.1094/phyto-07-21-0280-r
. [PMID: 34763530] - Shagufta Perveen, Abida Parveen, Muhammad Saeed, Rabia Arshad, Sara Zafar. Interactive effect of glycine, alanine, and calcium nitrate Ca(NO3)2 on wheat (Triticum aestivum L.) under lead (Pb) stress.
Environmental science and pollution research international.
2022 May; 29(25):37954-37968. doi:
10.1007/s11356-021-17348-y
. [PMID: 35075561] - Haining Huang, Chongkun Zuo, Yaqian Zhao, Shen Huang, Tongkai Wang, Min Zhu, Jia Li, Xiaorong Tao. Determination of key residues in tospoviral NSm required for Sw-5b recognition, their potential ability to overcome resistance, and the effective resistance provided by improved Sw-5b mutants.
Molecular plant pathology.
2022 05; 23(5):622-633. doi:
10.1111/mpp.13182
. [PMID: 34962031] - Joonho Jeong, Jung Woo Shin, Seok Won Jung, Eun Ji Park, Neung Hwa Park. Tenofovir alafenamide treatment may not worsen the lipid profile of chronic hepatitis B patients: A propensity score-matched analysis.
Clinical and molecular hepatology.
2022 04; 28(2):254-264. doi:
10.3350/cmh.2021.0314
. [PMID: 34959261]