thiethylperazine (BioDeep_00000398468)

Main id: BioDeep_00000002706

 


代谢物信息卡片


thiethylperazine

化学式: C22H29N3S2 (399.1802794)
中文名称: 乙巯匹拉嗪
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CCSC1=CC2=C(C=C1)SC3=CC=CC=C3N2CCCN4CCN(CC4)C
InChI: InChI=1S/C22H29N3S2/c1-3-26-18-9-10-22-20(17-18)25(19-7-4-5-8-21(19)27-22)12-6-11-24-15-13-23(2)14-16-24/h4-5,7-10,17H,3,6,11-16H2,1-2H3

描述信息

R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AD - Phenothiazine derivatives
D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents
C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent
D005765 - Gastrointestinal Agents > D000932 - Antiemetics
D002491 - Central Nervous System Agents
Thiethylperazine, a phenothiazine derivate, is an orally active and potent dopamine D2-receptor and histamine H1-receptor antagonist. Thiethylperazine is also a selective ABCC1activator that reduces amyloid-β (Aβ) load in mice. Thiethylperazine has anti-emetic, antipsychotic and antimicrobial effects[1][2][3].

同义名列表

1 个代谢物同义名

thiethylperazine



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Miran Brvar, Tihana Kurtović, Damjan Grenc, Maja Lang Balija, Igor Križaj, Beata Halassy. Vipera ammodytes bites treated with antivenom ViperaTAb: a case series with pharmacokinetic evaluation. Clinical toxicology (Philadelphia, Pa.). 2017 Apr; 55(4):241-248. doi: 10.1080/15563650.2016.1277235. [PMID: 28092984]
  • Marcin Kolaczkowski, Anna Kolaczkowska, Noboru Motohashi, Krystyna Michalak. New high-throughput screening assay to reveal similarities and differences in inhibitory sensitivities of multidrug ATP-binding cassette transporters. Antimicrobial agents and chemotherapy. 2009 Apr; 53(4):1516-27. doi: 10.1128/aac.00956-08. [PMID: 19188399]
  • H Hattori, S Yamamoto, M Iwata, E Takashima, T Yamada, O Suzuki. Sensitive determination of phenothiazines in body fluids by gas chromatography with surface ionization detection. Journal of chromatography. 1992 Sep; 579(2):247-52. doi: 10.1016/0378-4347(92)80388-7. [PMID: 1358904]
  • J M Potter, D B Reid, R J Shaw, P Hackett, P E Hickman. Myoclonus associated with treatment with high doses of morphine: the role of supplemental drugs. BMJ (Clinical research ed.). 1989 Jul; 299(6692):150-3. doi: 10.1136/bmj.299.6692.150. [PMID: 2475196]
  • H Maurer, K Pfleger. Identification of phenothiazine antihistamines and their metabolites in urine. Archives of toxicology. 1988; 62(2-3):185-91. doi: 10.1007/bf00570138. [PMID: 2904251]
  • C Cassimos, J Tsiuris, B Danielides, K Malaka-Zafiriu. Urinary D-glucaric acid excretion in children with dystonic reactions caused by antiemetic drugs. The Journal of pediatrics. 1975 Dec; 87(6 Pt 1):981-2. doi: 10.1016/s0022-3476(75)80923-1. [PMID: 1185409]