Emopamil (BioDeep_00000009566)

 

Secondary id: BioDeep_00001871529

human metabolite Endogenous Chemicals and Drugs


代谢物信息卡片


2-Isopropyl-5(methylphen-ethylamino)-2-phenylvaleronitrile hydrochloride

化学式: C23H30N2 (334.2409)
中文名称: 依莫帕米
谱图信息: 最多检出来源 Homo sapiens(endogenous) 3.22%

分子结构信息

SMILES: CC(C)C(C#N)(CCCN(C)CCc1ccccc1)c1ccccc1
InChI: InChI=1S/C23H30N2/c1-20(2)23(19-24,22-13-8-5-9-14-22)16-10-17-25(3)18-15-21-11-6-4-7-12-21/h4-9,11-14,20H,10,15-18H2,1-3H3

描述信息

Emopamil is a drug that is a competitive inhibitor of 3β-hydroxysteroid-Δ8-Δ7-isomerase. 3β-hydroxysteroid-Δ8-Δ7-isomerase is involved in the formation of cholesterol from lanosterol. Emopamil is a calcium channel blocker. [HMDB]
Emopamil is a drug that is a competitive inhibitor of 3β-hydroxysteroid-Δ8-Δ7-isomerase. 3β-hydroxysteroid-Δ8-Δ7-isomerase is involved in the formation of cholesterol from lanosterol. Emopamil is a calcium channel blocker.
C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent
D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers
D000077264 - Calcium-Regulating Hormones and Agents
D049990 - Membrane Transport Modulators

同义名列表

13 个代谢物同义名

2-Isopropyl-5(methylphen-ethylamino)-2-phenylvaleronitrile hydrochloride; 5-[methyl(2-phenylethyl)amino]-2-phenyl-2-(propan-2-yl)pentanenitrile; 2-Isopropyl-5-(methylphenethylamino)-2-phenylvaleronitrile; Emopamil, (+-)-isomer; Emopamil, (-)-isomer; Emopamil, (+)-isomer; Emopamilo [spanish]; Emopamilum [latin]; Emopamil [inn]; (+-)Emopamil; Levemopamil; Emopamil; Emopamil



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 4 ABCB1, CA1, CA3, SREBF1
Endoplasmic reticulum membrane 6 DHCR7, EBP, EBPL, HSP90B1, KCNA2, SREBF1
Nucleus 2 HSP90B1, SREBF1
cytosol 4 CA1, CA3, HSP90B1, SREBF1
dendrite 1 KCNA2
nucleoplasm 1 SREBF1
Cell membrane 2 ABCB1, KCNA2
lamellipodium 1 KCNA2
Cell projection, axon 1 KCNA2
Multi-pass membrane protein 8 ABCB1, CACNA1I, DHCR7, EBP, EBPL, KCNA2, KCNA3, SREBF1
Golgi apparatus membrane 1 SREBF1
Synapse 1 KCNA2
cell surface 1 ABCB1
glutamatergic synapse 2 KCNA2, KCNA3
Golgi membrane 1 SREBF1
presynaptic membrane 2 KCNA2, KCNA3
smooth endoplasmic reticulum 1 HSP90B1
plasma membrane 4 ABCB1, CACNA1I, KCNA2, KCNA3
Membrane 7 ABCB1, CACNA1I, DHCR7, EBPL, HSP90B1, KCNA2, KCNA3
apical plasma membrane 1 ABCB1
axon 2 KCNA2, KCNA3
extracellular exosome 3 ABCB1, CA1, HSP90B1
endoplasmic reticulum 5 DHCR7, EBP, EBPL, HSP90B1, SREBF1
perinuclear region of cytoplasm 2 HSP90B1, KCNA3
protein-containing complex 2 HSP90B1, SREBF1
extracellular region 1 HSP90B1
neuronal cell body membrane 1 KCNA2
nuclear membrane 1 EBP
perikaryon 1 KCNA2
cytoplasmic vesicle 1 EBP
midbody 1 HSP90B1
postsynaptic membrane 2 KCNA2, KCNA3
Apical cell membrane 1 ABCB1
Membrane raft 1 KCNA3
focal adhesion 1 HSP90B1
collagen-containing extracellular matrix 1 HSP90B1
nuclear outer membrane 1 DHCR7
neuron projection 1 KCNA2
chromatin 1 SREBF1
[Isoform 2]: Cell membrane 1 KCNA3
nuclear envelope 2 EBP, SREBF1
Nucleus envelope 1 EBP
Cytoplasmic vesicle membrane 1 SREBF1
axon initial segment 1 KCNA2
Cell projection, dendrite 1 KCNA2
Melanosome 1 HSP90B1
Presynaptic cell membrane 1 KCNA2
sperm plasma membrane 1 HSP90B1
synaptic membrane 1 KCNA2
voltage-gated potassium channel complex 2 KCNA2, KCNA3
endoplasmic reticulum lumen 1 HSP90B1
axon terminus 1 KCNA2
voltage-gated calcium channel complex 1 CACNA1I
ER to Golgi transport vesicle membrane 1 SREBF1
calyx of Held 2 KCNA2, KCNA3
Sarcoplasmic reticulum lumen 1 HSP90B1
paranodal junction 1 KCNA2
Synapse, synaptosome 1 KCNA2
external side of apical plasma membrane 1 ABCB1
[Isoform 1]: Cell membrane 1 KCNA3
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
lamellipodium membrane 1 KCNA2
endocytic vesicle lumen 1 HSP90B1
Cell projection, lamellipodium membrane 1 KCNA2
endoplasmic reticulum chaperone complex 1 HSP90B1
Cell junction, paranodal septate junction 1 KCNA2
juxtaparanode region of axon 1 KCNA2
[Isoform 3]: Cytoplasm, perinuclear region 1 KCNA3
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1


文献列表

  • Luke B Allen, Thiago C Genaro-Mattos, Allison Anderson, Ned A Porter, Károly Mirnics, Zeljka Korade. Amiodarone Alters Cholesterol Biosynthesis through Tissue-Dependent Inhibition of Emopamil Binding Protein and Dehydrocholesterol Reductase 24. ACS chemical neuroscience. 2020 05; 11(10):1413-1423. doi: 10.1021/acschemneuro.0c00042. [PMID: 32286791]
  • Jun Toyohara, Mayumi Okamoto, Hiroki Aramaki, Yuto Zaitsu, Isao Shimizu, Kiichi Ishiwata. (R)-[¹¹C]Emopamil as a novel tracer for imaging enhanced P-glycoprotein function. Nuclear medicine and biology. 2016 Jan; 43(1):52-62. doi: 10.1016/j.nucmedbio.2015.09.001. [PMID: 26429767]
  • Amy S Paller, Maurice A M van Steensel, Marina Rodriguez-Martín, Jennifer Sorrell, Candrice Heath, Debra Crumrine, Michel van Geel, Antonio Noda Cabrera, Peter M Elias. Pathogenesis-based therapy reverses cutaneous abnormalities in an inherited disorder of distal cholesterol metabolism. The Journal of investigative dermatology. 2011 Nov; 131(11):2242-8. doi: 10.1038/jid.2011.189. [PMID: 21753784]
  • Vadim B Fedorov, Anna V Goropashnaya, Øivind Tøien, Nathan C Stewart, Celia Chang, Haifang Wang, Jun Yan, Louise C Showe, Michael K Showe, Brian M Barnes. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus). BMC genomics. 2011 03; 12(?):171. doi: 10.1186/1471-2164-12-171. [PMID: 21453527]
  • Steffen Fischer, Christian Wiese, Eva Grosse Maestrup, Achim Hiller, Winnie Deuther-Conrad, Matthias Scheunemann, Dirk Schepmann, Jörg Steinbach, Bernhard Wünsch, Peter Brust. Molecular imaging of σ receptors: synthesis and evaluation of the potent σ1 selective radioligand [18F]fluspidine. European journal of nuclear medicine and molecular imaging. 2011 Mar; 38(3):540-51. doi: 10.1007/s00259-010-1658-z. [PMID: 21072511]
  • Rachael D Hartman, Vered Molho-Pessach, Julie V Schaffer. Conradi-Hünermann-Happle syndrome. Dermatology online journal. 2010 Nov; 16(11):4. doi: NULL. [PMID: 21163155]
  • Amit K Pandey, Neha Munjal, Malabika Datta. Gene expression profiling and network analysis reveals lipid and steroid metabolism to be the most favored by TNFalpha in HepG2 cells. PloS one. 2010 Feb; 5(2):e9063. doi: 10.1371/journal.pone.0009063. [PMID: 20140224]
  • David A Sullivan, Roderick V Jensen, Tomo Suzuki, Stephen M Richards. Do sex steroids exert sex-specific and/or opposite effects on gene expression in lacrimal and meibomian glands?. Molecular vision. 2009 Aug; 15(?):1553-72. doi: ". [PMID: 19693291]
  • Jing Zheng, Charles T Anderson, Katharine K Miller, MaryAnn Cheatham, Peter Dallos. Identifying components of the hair-cell interactome involved in cochlear amplification. BMC genomics. 2009 Mar; 10(?):127. doi: 10.1186/1471-2164-10-127. [PMID: 19320974]
  • A Gioti, J M Pradier, E Fournier, P Le Pêcheur, C Giraud, D Debieu, J Bach, P Leroux, C Levis. A Botrytis cinerea emopamil binding domain protein, required for full virulence, belongs to a eukaryotic superfamily which has expanded in euascomycetes. Eukaryotic cell. 2008 Feb; 7(2):368-78. doi: 10.1128/ec.00159-07. [PMID: 18156289]
  • N V Whittock, L Izatt, S L Simpson-Dent, K Becker, S H Wakelin. Molecular prenatal diagnosis in a case of an X-linked dominant chondrodysplasia punctata. Prenatal diagnosis. 2003 Sep; 23(9):701-4. doi: 10.1002/pd.667. [PMID: 12975777]
  • Jeff M Milunsky, Thomas A Maher, Aida B Metzenberg. Molecular, biochemical, and phenotypic analysis of a hemizygous male with a severe atypical phenotype for X-linked dominant Conradi-Hunermann-Happle syndrome and a mutation in EBP. American journal of medical genetics. Part A. 2003 Jan; 116A(3):249-54. doi: 10.1002/ajmg.a.10849. [PMID: 12503101]
  • Gail E Herman, Richard I Kelley, V Pureza, D Smith, Kevin Kopacz, James Pitt, Rebecca Sutphen, Leslie J Sheffield, Aida B Metzenberg. Characterization of mutations in 22 females with X-linked dominant chondrodysplasia punctata (Happle syndrome). Genetics in medicine : official journal of the American College of Medical Genetics. 2002 Nov; 4(6):434-8. doi: 10.1097/00125817-200211000-00006. [PMID: 12509714]
  • Cristina Has, Udo Seedorf, Frank Kannenberg, Leena Bruckner-Tuderman, Elzo Folkers, Regina Fölster-Holst, Ivo Baric, Heiko Traupe. Gas chromatography-mass spectrometry and molecular genetic studies in families with the Conradi-Hünermann-Happle syndrome. The Journal of investigative dermatology. 2002 May; 118(5):851-8. doi: 10.1046/j.1523-1747.2002.01761.x. [PMID: 11982764]
  • K W Seo, R I Kelley, S Okano, T Watanabe. Mouse Tdho abnormality results from double point mutations of the emopamil binding protein gene (Ebp). Mammalian genome : official journal of the International Mammalian Genome Society. 2001 Aug; 12(8):602-5. doi: 10.1007/s00335-001-3010-1. [PMID: 11471053]
  • S Bae, J Seong, Y Paik. Cholesterol biosynthesis from lanosterol: molecular cloning, chromosomal localization, functional expression and liver-specific gene regulation of rat sterol delta8-isomerase, a cholesterogenic enzyme with multiple functions. The Biochemical journal. 2001 Feb; 353(Pt 3):689-99. doi: 10.1042/0264-6021:3530689. [PMID: 11171067]
  • H J Kramer, J Rosberg, A Bäcker, H Meyer-Lehnert. Calcium entry and 5-HT2 receptor blockade in oliguric ischaemic acute renal failure: effects of levemopamil in conscious rats. British journal of pharmacology. 1996 Mar; 117(6):1348-54. doi: 10.1111/j.1476-5381.1996.tb16735.x. [PMID: 8882635]
  • F F Moebius, G G Burrows, J Striessnig, H Glossmann. Biochemical characterization of a 22-kDa high affinity antiischemic drug-binding polypeptide in the endoplasmic reticulum of guinea pig liver: potential common target for antiischemic drug action. Molecular pharmacology. 1993 Feb; 43(2):139-48. doi: . [PMID: 8429820]
  • V Höllt, M Kouba, M Dietel, G Vogt. Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochemical pharmacology. 1992 Jun; 43(12):2601-8. doi: 10.1016/0006-2952(92)90149-d. [PMID: 1352973]
  • C Zech, R Staudinger, J Mühlbacher, H Glossmann. Novel sites for phenylalkylamines: characterisation of a sodium-sensitive drug receptor with (-)-[3H]emopamil. European journal of pharmacology. 1991 Oct; 208(2):119-30. doi: 10.1016/0922-4106(91)90062-m. [PMID: 1800125]
  • L Szabo. (S)-emopamil, a novel calcium and serotonin antagonist for the treatment of cerebrovascular disorders. 2nd communication: brain penetration, cerebral vascular and metabolic effects. Arzneimittel-Forschung. 1989 Mar; 39(3):309-14. doi: . [PMID: 2757656]
  • S Mills, L Chan, U Schwertschlag, J I Shapiro, R W Schrier. The protective effect of (-) Emopamil on renal function following warm and cold ischemia. Transplantation. 1987 Jun; 43(6):928-30. doi: NULL. [PMID: 3590302]