Dechloroethylcyclophosphamide (BioDeep_00001875348)

Main id: BioDeep_00000011258

 


代谢物信息卡片


Dechloroethylcyclophosphamide

化学式: C5H12ClN2O2P (198.0325)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 65.33%

分子结构信息

SMILES: C1CNP(=O)(OC1)NCCCl
InChI: InChI=1S/C5H12ClN2O2P/c6-2-4-8-11(9)7-3-1-5-10-11/h1-5H2,(H2,7,8,9)

描述信息

D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D009588 - Nitrogen Mustard Compounds
D000970 - Antineoplastic Agents > D018906 - Antineoplastic Agents, Alkylating > D010752 - Phosphoramide Mustards

同义名列表

3 个代谢物同义名

Dechloroethylcyclophosphamide; 3-Dechloroethylifosfamide; Dechloroethylcyclophosphamide



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 7 ALB, CYP2B6, CYP3A4, GSTM1, GSTP1, GSTT1, NOTCH2
Peripheral membrane protein 2 CYP27A1, CYP2B6
Endoplasmic reticulum membrane 4 CYP2B6, CYP3A4, CYP3A5, NOTCH2
Mitochondrion membrane 1 CYP27A1
Nucleus 3 ALB, GSTP1, NOTCH2
cytosol 4 ALB, GSTM1, GSTP1, GSTT1
centrosome 1 ALB
nucleoplasm 1 NOTCH2
cell surface 2 C3, NOTCH2
Golgi apparatus 1 ALB
Golgi membrane 1 NOTCH2
mitochondrial inner membrane 1 CYP27A1
plasma membrane 2 C3, NOTCH2
Membrane 3 CYP3A4, CYP3A5, NOTCH2
extracellular exosome 4 ALB, C3, GSTP1, GSTT1
endoplasmic reticulum 1 ALB
extracellular space 3 ALB, C3, GSTP1
mitochondrion 2 CYP27A1, GSTP1
protein-containing complex 2 ALB, C3
intracellular membrane-bounded organelle 3 CYP2B6, CYP3A4, CYP3A5
Microsome membrane 3 CYP2B6, CYP3A4, CYP3A5
Single-pass type I membrane protein 1 NOTCH2
Secreted 2 ALB, C3
extracellular region 4 ALB, C3, GSTP1, NOTCH2
mitochondrial matrix 1 CYP27A1
anchoring junction 1 ALB
vesicle 1 GSTP1
Mitochondrion inner membrane 1 CYP27A1
receptor complex 1 NOTCH2
ciliary basal body 1 ALB
cilium 1 NOTCH2
centriole 1 ALB
spindle pole 1 ALB
blood microparticle 2 ALB, C3
intercellular bridge 1 GSTM1
ficolin-1-rich granule lumen 1 GSTP1
secretory granule lumen 2 C3, GSTP1
endoplasmic reticulum lumen 2 ALB, C3
platelet alpha granule lumen 1 ALB
azurophil granule lumen 1 C3
TRAF2-GSTP1 complex 1 GSTP1
ciliary transition fiber 1 ALB
[Notch 2 extracellular truncation]: Cell membrane 1 NOTCH2
[Notch 2 intracellular domain]: Nucleus 1 NOTCH2


文献列表

  • Le Yang, Chenyang Yan, Feng Zhang, Bo Jiang, Shouhong Gao, Youtian Liang, Lifeng Huang, Wansheng Chen. Effects of ketoconazole on cyclophosphamide metabolism: evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models. Experimental animals. 2018 Feb; 67(1):71-82. doi: 10.1538/expanim.17-0048. [PMID: 29129847]
  • Girish Chinnaswamy, Julie Errington, Annabel Foot, Alan V Boddy, Gareth J Veal, Michael Cole. Pharmacokinetics of cyclophosphamide and its metabolites in paediatric patients receiving high-dose myeloablative therapy. European journal of cancer (Oxford, England : 1990). 2011 Jul; 47(10):1556-63. doi: 10.1016/j.ejca.2011.03.008. [PMID: 21482104]
  • Katarina Aleksa, Alejandro Nava-Ocampo, Gideon Koren. Detection and quantification of (R) and (S)-dechloroethylifosfamide metabolites in plasma from children by enantioselective LC/MS/MS. Chirality. 2009 Jul; 21(7):674-80. doi: 10.1002/chir.20662. [PMID: 18825700]
  • Stefan Wilde, Alexander Jetter, Stephan Rietbrock, Dirk Kasel, Andreas Engert, Andreas Josting, Beate Klimm, Georg Hempel, Stefanie Reif, Ulrich Jaehde, Ute Merkel, Dagmar Busse, Matthias Schwab, Volker Diehl, Uwe Fuhr. Population pharmacokinetics of the BEACOPP polychemotherapy regimen in Hodgkin's lymphoma and its effect on myelotoxicity. Clinical pharmacokinetics. 2007; 46(4):319-33. doi: 10.2165/00003088-200746040-00005. [PMID: 17375983]
  • Elzbieta Zielińska, Małgorzata Zubowska, Konrad Misiura. Role of GSTM1, GSTP1, and GSTT1 gene polymorphism in ifosfamide metabolism affecting neurotoxicity and nephrotoxicity in children. Journal of pediatric hematology/oncology. 2005 Nov; 27(11):582-9. doi: 10.1097/01.mph.0000187429.52616.8a. [PMID: 16282887]
  • Katarina Aleksa, Doug Matsell, Kris Krausz, Harry Gelboin, Shinya Ito, Gideon Koren. Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatric nephrology (Berlin, Germany). 2005 Jul; 20(7):872-85. doi: 10.1007/s00467-004-1807-3. [PMID: 15875221]
  • T Kerbusch, R A Mathĵt, H J Keizer, J Ouwerkerk, S Rodenhuis, J H Schellens, J H Beijnen. Population pharmacokinetics and exploratory pharmacodynamics of ifosfamide and metabolites after a 72-h continuous infusion in patients with soft tissue sarcoma. European journal of clinical pharmacology. 2001 Sep; 57(6-7):467-77. doi: 10.1007/s002280100322. [PMID: 11699611]
  • T Kerbusch, M J Jeuken, J Derraz, J W van Putten, A D Huitema, J H Beijnen. Determination of ifosfamide, 2- and 3-dechloroethyifosfamide using gas chromatography with nitrogen-phosphorus or mass spectrometry detection. Therapeutic drug monitoring. 2000 Oct; 22(5):613-20. doi: 10.1097/00007691-200010000-00018. [PMID: 11034269]
  • V Gilard, R Martino, M Malet-Martino, U Niemeyer, J Pohl. Chemical stability and fate of the cytostatic drug ifosfamide and its N-dechloroethylated metabolites in acidic aqueous solutions. Journal of medicinal chemistry. 1999 Jul; 42(14):2542-60. doi: 10.1021/jm980587g. [PMID: 10411475]
  • L J Yu, P Drewes, K Gustafsson, E G Brain, J E Hecht, D J Waxman. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. The Journal of pharmacology and experimental therapeutics. 1999 Mar; 288(3):928-37. doi: . [PMID: 10027828]
  • A D Huitema, M M Tibben, T Kerbusch, J W Zwikker, S Rodenhuis, J H Beijnen. Simultaneous determination of N,N',N"-triethylenethiophosphoramide, cyclophosphamide and some of their metabolites in plasma using capillary gas chromatography. Journal of chromatography. B, Biomedical sciences and applications. 1998 Sep; 716(1-2):177-86. doi: 10.1016/s0378-4347(98)00300-4. [PMID: 9824231]
  • G P Kaijser, J De Kraker, A Bult, W J Underberg, J H Beijnen. Pharmacokinetics of ifosfamide and some metabolites in children. Anticancer research. 1998 May; 18(3B):1941-9. doi: NULL. [PMID: 9677448]
  • J M Singer, J M Hartley, C Brennan, P W Nicholson, R L Souhami. The pharmacokinetics and metabolism of ifosfamide during bolus and infusional administration: a randomized cross-over study. British journal of cancer. 1998 Mar; 77(6):978-84. doi: 10.1038/bjc.1998.161. [PMID: 9528844]
  • G P Kaijser, J H Beijnen, A Bult, H J Keizer, W J Underberg. Chromatographic analysis of the enantiomers of ifosfamide and some of its metabolites in plasma and urine. Journal of chromatography. B, Biomedical sciences and applications. 1997 Mar; 690(1-2):131-8. doi: 10.1016/s0378-4347(96)00376-3. [PMID: 9106037]
  • V Kurowski, T Wagner. Urinary excretion of ifosfamide, 4-hydroxyifosfamide, 3- and 2-dechloroethylifosfamide, mesna, and dimesna in patients on fractionated intravenous ifosfamide and concomitant mesna therapy. Cancer chemotherapy and pharmacology. 1997; 39(5):431-9. doi: 10.1007/s002800050594. [PMID: 9054957]
  • G P Kaijser, H J Keizer, J H Beijnen, A Bult, W J Underberg. Pharmacokinetics of ifosfamide, 2- and 3-dechloroethylifosfamide in plasma and urine of cancer patients treated with a 10-day continuous infusion of ifosfamide. Anticancer research. 1996 Sep; 16(5B):3247-57. doi: . [PMID: 8920799]
  • S M Yule, A V Boddy, M Cole, L Price, R Wyllie, M J Tasso, A D Pearson, J R Idle. Cyclophosphamide metabolism in children. Cancer research. 1995 Feb; 55(4):803-9. doi: . [PMID: 7850793]
  • G Momerency, K Van Cauwenberghe, P H Slee, A T Van Oosterom, E A De Bruijn. The determination of cyclophosphamide and its metabolites in blood plasma as stable trifluoroacetyl derivatives by electron capture chemical ionization gas chromatography/mass spectrometry. Biological mass spectrometry. 1994 Mar; 23(3):149-58. doi: 10.1002/bms.1200230306. [PMID: 8148406]
  • C P Granville, B Gehrcke, W A König, I W Wainer. Determination of the enantiomers of ifosfamide and its 2- and 3-N-dechloroethylated metabolites in plasma and urine using enantioselective gas chromatography with mass spectrometric detection. Journal of chromatography. 1993 Dec; 622(1):21-31. doi: 10.1016/0378-4347(93)80245-y. [PMID: 8120109]
  • G P Kaijser, J H Beijnen, A Bult, G Wiese, J de Kraker, H J Keizer, W J Underberg. Gas chromatographic determination of 2- and 3-dechloroethylifosfamide in plasma and urine. Journal of chromatography. 1992 Dec; 583(2):175-82. doi: 10.1016/0378-4347(92)80550-a. [PMID: 1478981]
  • M J Lind, H L Roberts, N Thatcher, J R Idle. The effect of route of administration and fractionation of dose on the metabolism of ifosfamide. Cancer chemotherapy and pharmacology. 1990; 26(2):105-11. doi: 10.1007/bf02897254. [PMID: 2347037]
  • K Misiura, A Okruszek, K Pankiewicz, W J Stec, Z Czownicki, B Utracka. Stereospecific synthesis of chiral metabolites of ifosfamide and their determination in the urine. Journal of medicinal chemistry. 1983 May; 26(5):674-9. doi: 10.1021/jm00359a010. [PMID: 6842506]