Subcellular Location: [Isoform 1]: Perikaryon

Found 17 associated metabolites.

1 associated genes. C9orf72

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.079)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

Irisfloretin

8H-1,3-Dioxolo(4,5-g)(1)benzopyran-8-one, 9-methoxy-7-(3,4,5-trimethoxyphenyl)-

C20H18O8 (386.1002)


Irisflorentin is a member of 4-methoxyisoflavones. Irisflorentin is a natural product found in Iris tectorum, Iris leptophylla, and other organisms with data available. Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1]. Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1].

   

Edaravone

3-methyl-1-phenyl-4,5-dihydro-1H-pyrazol-5-one

C10H10N2O (174.0793)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers C26170 - Protective Agent > C1509 - Neuroprotective Agent D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank N - Nervous system Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Riluzole

6-(trifluoromethoxy)-1,3-benzothiazol-2-amine

C8H5F3N2OS (234.0075)


Riluzole is only found in individuals that have used or taken this drug. It is a glutamate antagonist (receptors, glutamate) used as an anticonvulsant (anticonvulsants) and to prolong the survival of patients with amyotrophic lateral sclerosis. [PubChem]The mode of action of riluzole is unknown. Its pharmacological properties include the following, some of which may be related to its effect: 1) an inhibitory effect on glutamate release (activation of glutamate reuptake), 2) inactivation of voltage-dependent sodium channels, and 3) ability to interfere with intracellular events that follow transmitter binding at excitatory amino acid receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents N - Nervous system Riluzole is an anticonvulsant agent and belongs to the family of use-dependent Na+ channel blocker which can also inhibit GABA uptake with an IC50 of 43 μM.

   

Toyomycin

chromomycin a3

C57H82O26 (1182.5094)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D002865 - Chromomycins D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes Same as: D02062

   

Propylene glycol

(R)-2-Hydroxy-1-propanol

C3H8O2 (76.0524)


Propylene glycol (CAS: 57-55-6), also known as 1,2-propanediol, is an organic compound (a diol alcohol), usually a tasteless, odourless, and colourless clear oily liquid that is hygroscopic and miscible with water, acetone, and chloroform. It is manufactured by the hydration of propylene oxide. Propylene glycol is used as a solvent for intravenous, oral, and topical pharmaceutical preparations It is generally considered safe. However, in large doses, it can be toxic, especially if given over a short period of time. Intravenous lorazepam contains the largest amount of propylene glycol of commonly used drugs. In adults with normal liver and kidney function, the terminal half-life of propylene glycol ranges from 1.4 to 3.3 hours. Propylene glycol is metabolized by the liver to form lactate, acetate, and pyruvate. The nonmetabolized drug is excreted in the urine mainly as the glucuronide conjugate, approximately 12 to 45 percent is excreted unchanged in urine. Renal clearance decreases as the dose administered increases (390 ml/minute/173 m2 at a dose of 5 g/day but only 144 ml/minute/173 m2 at a dose of 21 g/day). These data suggest that renal clearance declines at higher propylene glycol doses because of the saturation of proximal tubular secretion of the drug. As an acceptable level of propylene glycol has not been defined, the clinical implication of a propylene glycol level is unclear. The World Health Organization (WHO) recommends a maximum consumption of 25 mg/kg/day (1.8 g/day for a 75 kg male) of propylene glycol when used as a food additive, but this limit does not address its use as a drug solvent. No maximum dose is recommended in the literature for intravenous therapy with propylene glycol. Intoxication occurs at much higher doses than the WHO dose limit and is exclusive to pharmacologic exposure. Propylene glycol toxicity includes the development of serum hyperosmolality, lactic acidosis, and kidney failure. It has been suggested that proximal tubular necrosis is the cause of acute kidney injury from propylene glycol. Along these lines, proximal tubular cell injury occurs in cultured human cells exposed to propylene glycol. Acute tubular necrosis was described with propylene glycol toxicity in a case of concomitant administration of intravenous lorazepam and trimethoprim sulfamethoxazole. Propylene glycol induced intoxication can also mimic sepsis or systemic inflammatory response syndrome (SIRS). Patients suspected of having sepsis with negative cultures should be evaluated for propylene glycol toxicity if they have been exposed to high dose lorazepam or other medications containing this solvent (PMID:17555487). Propylene glycol is an anticaking agent, antioxidant, dough strengthener, emulsifier, flavouring agent, formulation aid, humectant, solvent, preservative, stabiliser, hog/poultry scald agent, and surface active agent. It is found in foods such as roasted sesame seeds, oats, truffle and other mushrooms. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

Tetrabenazine

9,10-dimethoxy-3-(2-methylpropyl)-1H,2H,3H,4H,6H,7H,11bH-pyrido[2,1-a]isoquinolin-2-one

C19H27NO3 (317.1991)


A drug formerly used as an antipsychotic but now used primarily in the treatment of various movement disorders including tardive dyskinesia. Tetrabenazine blocks uptake into adrenergic storage vesicles and has been used as a high affinity label for the vesicle transport system. [PubChem] D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575

   

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

10,10-bis[(pyridin-4-yl)methyl]-9,10-dihydroanthracen-9-one

C26H20N2O (376.1576)


   

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.079)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. A dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. Pectolinarigenin, also known as 5,7-dihydroxy-4,6-dimethoxyflavone or 4-methylcapillarisin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, pectolinarigenin is considered to be a flavonoid lipid molecule. Pectolinarigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pectolinarigenin can be found in sunflower and tarragon, which makes pectolinarigenin a potential biomarker for the consumption of these food products. Pectolinarigenin is a Cirsium isolate with anti-inflammatory activity and belongs to the flavones . Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

Irisflorentin

8H-1,3-Dioxolo(4,5-g)(1)benzopyran-8-one, 9-methoxy-7-(3,4,5-trimethoxyphenyl)-

C20H18O8 (386.1002)


Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1]. Irisflorentin, a naturally occurring isoflavone, is an abundant active constituent in Belamcanda chinensis. Irisflorentin markedly reduces the transcriptional and translational levels of inducible nitric oxide synthase (iNOS) as well as the production of NO. Anti-inflammatory activity[1].

   

edaravone

Edaravone (MCI-186)

C10H10N2O (174.0793)


D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers C26170 - Protective Agent > C1509 - Neuroprotective Agent D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank N - Nervous system Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

riluzole

Riluzole (Rilutek)

C8H5F3N2OS (234.0075)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents N - Nervous system Riluzole is an anticonvulsant agent and belongs to the family of use-dependent Na+ channel blocker which can also inhibit GABA uptake with an IC50 of 43 μM.

   

TETRABENAZINE

TETRABENAZINE

C19H27NO3 (317.1991)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575

   

(R)-(−)-Propylene glycerol

(R)-(−)-Propylene glycerol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

520-12-7

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)- (9CI)

C17H14O6 (314.079)


Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

R-1,2-PROPANEDIOL

(R)-(-)-1,2-Propanediol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

XE991

10,10-Bis(pyridin-4-ylmethyl)anthracen-9-one

C26H20N2O (376.1576)