(R)-Kawain
Kawain is a member of 2-pyranones and an aromatic ether. Kavain is a natural product found in Piper methysticum, Alnus sieboldiana, and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Kawain is found in beverages. (R)-Kawain is found in the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1].
Guanine
Guanine is one of the five main nucleobases found in the nucleic acids DNA and RNA. Guanine is a derivative of purine, consisting of a fused pyrimidine-imidazole ring system with conjugated double bonds. Being unsaturated, the bicyclic molecule is planar. The guanine nucleoside is called guanosine. The first isolation of guanine was reported in 1844 from the excreta of sea birds, known as guano, which was used as a source of fertilizer. High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Guanine nucleotide-binding regulatory proteins may be involved in the activation of phospholipases C and A2 by hormones and other ligands. The binding of hormones to receptors that activate phospholipase C is decreased by guanine nucleotides and these hormones also stimulate a high-affinity GTPase activity in cell membranes. Effects of hormones on phospholipase C activity in cell-free preparations are dependent on the presence of guanine nucleotides. Hypoxanthine-guanine phosphoribosyltransferase (HPRT, EC 2.4.2.8) is a purine salvage enzyme that catalyses the conversion of hypoxanthine and guanine to their respective mononucleotides. Partial deficiency of this enzyme can result in the overproduction of uric acid leading to a severe form of gout, whilst a virtual absence of HPRT activity causes the Lesch-Nyhan syndrome, an inborn error of metabolism, which is characterised by hyperuricaemia, mental retardation, choreoathetosis and compulsive self-mutilation. Peroxynitrite induces DNA base damage predominantly at guanine (G) and 8-oxoguanine (8-oxoG) nucleobases via oxidation reactions. G and 8-oxoG are the most reactive bases toward Peroxynitrite and possibly the major contributors to peroxynitrite-derived genotoxic and mutagenic lesions. The neutral G radical, reacts with NO2 to yield 8-nitroguanine and 5-nitro-4-guanidinohydantoin (PMID: 16352449, 2435586, 2838362, 1487231). Guanine is a 2-aminopurine carrying a 6-oxo substituent. It has a role as a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase, an oxopurine and a member of 2-aminopurines. It derives from a hydride of a 9H-purine. Guanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanine is a natural product found in Fritillaria thunbergii, Isatis tinctoria, and other organisms with data available. Guanine is a purine base that is a constituent of nucleotides occurring in nucleic acids. Guanine is a mineral with formula of C5H3(NH2)N4O. The corresponding IMA (International Mineralogical Association) number is IMA1973-056. The IMA symbol is Gni. Guanine is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs widely in animals and plants. Component of nucleic acids (CCD) A 2-aminopurine carrying a 6-oxo substituent. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and D-Gluconic acid (exact mass = 196.0583) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 54 CONFIDENCE standard compound; ML_ID 43
(R)-Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Methysticin is found in beverages. (R)-Methysticin is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
Guanosine diphosphate
Guanosine diphosphate, also known as gdp or 5-diphosphate, guanosine, is a member of the class of compounds known as purine ribonucleoside diphosphates. Purine ribonucleoside diphosphates are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate can be found in a number of food items such as strawberry, onion-family vegetables, walnut, and scarlet bean, which makes guanosine diphosphate a potential biomarker for the consumption of these food products. Guanosine diphosphate can be found primarily in blood and cerebrospinal fluid (CSF). Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in several metabolic pathways, some of which include betahistine h1-antihistamine action, fexofenadine h1-antihistamine action, clocinizine h1-antihistamine action, and bepotastine h1-antihistamine action. Guanosine diphosphate is also involved in several metabolic disorders, some of which include adenine phosphoribosyltransferase deficiency (APRT), canavan disease, gout or kelley-seegmiller syndrome, and pyruvate dehydrogenase complex deficiency. Moreover, guanosine diphosphate is found to be associated with epilepsy, subarachnoid hemorrhage, neuroinfection, and stroke. Guanosine diphosphate, abbreviated GDP, is a nucleoside diphosphate. It is an ester of pyrophosphoric acid with the nucleoside guanosine. GDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase guanine . Guanosine diphosphate, also known as 5-GDP or 5-diphosphate, guanosine, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Outside of the human body, Guanosine diphosphate has been detected, but not quantified in several different foods, such as devilfish, java plums, green beans, almonds, and orange mints. Guanosine diphosphate is a purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Guanosine triphosphate
Guanosine-5-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only difference being that nucleotides like GTP have phosphates on their ribose sugar. GTP has the guanine nucleobase attached to the 1 carbon of the ribose and it has the triphosphate moiety attached to riboses 5 carbon. GTP is essential to signal transduction, in particular with G-proteins, in second-messenger mechanisms where it is converted to guanosine diphosphate (GDP) through the action of GTPases. Guanosine triphosphate, also known as 5-GTP or H4GTP, belongs to the class of organic compounds known as purine ribonucleoside triphosphates. These are purine ribonucleotides with a triphosphate group linked to the ribose moiety. Thus, a GTP-bound tubulin serves as a cap at the tip of microtubule to protect from depolymerization; and, once the GTP is hydrolyzed, the microtubule begins to depolymerize and shrink rapidly. Guanosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine triphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Guanosine-5-triphosphate (GTP) is a purine nucleoside triphosphate. Outside of the human body, guanosine triphosphate has been detected, but not quantified in several different foods, such as mandarin orange (clementine, tangerine), coconuts, new zealand spinachs, sweet marjorams, and pepper (capsicum). Cyclic guanosine triphosphate (cGTP) helps cyclic adenosine monophosphate (cAMP) activate cyclic nucleotide-gated ion channels in the olfactory system. It also has the role of a source of energy or an activator of substrates in metabolic reactions, like that of ATP, but more specific. It is used as a source of energy for protein synthesis and gluconeogenesis. For instance, a GTP molecule is generated by one of the enzymes in the citric acid cycle. GTP is also used as an energy source for the translocation of the ribosome towards the 3 end of the mRNA. During microtubule polymerization, each heterodimer formed by an alpha and a beta tubulin molecule carries two GTP molecules, and the GTP is hydrolyzed to GDP when the tubulin dimers are added to the plus end of the growing microtubule. The importing of these proteins plays an important role in several pathways regulated within the mitochondria organelle, such as converting oxaloacetate to phosphoenolpyruvate (PEP) in gluconeogenesis. GTP is involved in energy transfer within the cell. Guanosine triphosphate (GTP) is a guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP functions as a carrier of phosphates and pyrophosphates involved in channeling chemical energy into specific biosynthetic pathways. GTP activates the signal transducing G proteins which are involved in various cellular processes including proliferation, differentiation, and activation of several intracellular kinase cascades. Proliferation and apoptosis are regulated in part by the hydrolysis of GTP by small GTPases Ras and Rho. Another type of small GTPase, Rab, plays a role in the docking and fusion of vesicles and may also be involved in vesicle formation. In addition to its role in signal transduction, GTP also serves as an energy-rich precursor of mononucleotide units in the enzymatic biosynthesis of DNA and RNA. [HMDB]. Guanosine triphosphate is found in many foods, some of which are oat, star fruit, lingonberry, and linden. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Rimantadine
Rimantadine is only found in individuals that have used or taken this drug. It is an RNA synthesis inhibitor that is used as an antiviral agent in the prophylaxis and treatment of influenza. [PubChem]The mechanism of action of rimantadine is not fully understood. Rimantadine appears to exert its inhibitory effect early in the viral replicative cycle, possibly inhibiting the uncoating of the virus. Genetic studies suggest that a virus protein specified by the virion M2 gene plays an important role in the susceptibility of influenza A virus to inhibition by rimantadine. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3149
Ophthalmic acid
Ophthalmic acid, also known as ophthalmate, belongs to the class of organic compounds known as oligopeptides. These are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Ophthalmic acid is a very strong basic compound (based on its pKa). Ophthalmic acid is an L-glutamine derivative in which L-glutamine is substituted by a 1--1-oxobutan-2-yl at the terminal amino nitrogen atom. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. Ophthalmic acid is an analogue of glutathione isolated from crystalline lens. [HMDB]
Prunetin
Prunetin is a hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as a metabolite, an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor, an anti-inflammatory agent and an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a hydroxyisoflavone and a member of 7-methoxyisoflavones. It is functionally related to a genistein. It is a conjugate acid of a prunetin-5-olate. Prunetin is a natural product found in Iris milesii, Prunus leveilleana, and other organisms with data available. Occurs in several Prunus subspecies and Glycyrrhiza glabra (licorice). Prunetin is found in tea, herbs and spices, and sour cherry. Prunetin is found in herbs and spices. Prunetin occurs in several Prunus species and Glycyrrhiza glabra (licorice). A hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].
Arachidonyl-CoA
Arachidonyl-CoA is an intermediate in Biosynthesis of unsaturated fatty acids. Arachidonyl-CoA is produced from 8,11,14-Eicosatrienoyl-CoA via the enzyme fatty acid desaturase 1 (EC 1.14.19.-). It is then converted to Arachidonic acid via the enzymepalmitoyl-CoA hydrolase (EC 3.1.2.2).
Nocodazole
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197
Prunetin
Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].
ophthalmic acid
A L-glutamine derivative that is L-glutamine substituted by a 1-[(carboxymethyl)amino]-1-oxobutan-2-yl at the terminal amino nitrogen atom. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; JCMUOFQHZLPHQP-BQBZGAKWSA-N_STSL_0170_Ophthalmic acid_0500fmol_180425_S2_LC02_MS02_88; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
rimantadine
J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AC - Cyclic amines D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent
Kavain
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants Kawain is a member of 2-pyranones and an aromatic ether. Kavain is a natural product found in Piper methysticum, Alnus sieboldiana, and Piper majusculum with data available. See also: Piper methysticum root (part of). (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1].
Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
CoA 20:4
nocodazole
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197
Guanosine-5-diphosphate
A purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
GUANOSINE-5-triphosphATE
COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
(R)-Kawain
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants