Reaction Process: Plant Reactome:R-CME-1119325

Sphingolipid metabolism related metabolites

find 8 related metabolites which is associated with chemical reaction(pathway) Sphingolipid metabolism

PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide

Coenzyme A

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-sulfanylethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C21H36N7O16P3S (767.1152046)


Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme notable for its role in the synthesis and oxidization of fatty acids and the oxidation of pyruvate in the citric acid cycle. It is adapted from beta-mercaptoethylamine, panthothenate, and adenosine triphosphate. It is also a parent compound for other transformation products, including but not limited to, phenylglyoxylyl-CoA, tetracosanoyl-CoA, and 6-hydroxyhex-3-enoyl-CoA. Coenzyme A is synthesized in a five-step process from pantothenate and cysteine. In the first step pantothenate (vitamin B5) is phosphorylated to 4-phosphopantothenate by the enzyme pantothenate kinase (PanK, CoaA, CoaX). In the second step, a cysteine is added to 4-phosphopantothenate by the enzyme phosphopantothenoylcysteine synthetase (PPC-DC, CoaB) to form 4-phospho-N-pantothenoylcysteine (PPC). In the third step, PPC is decarboxylated to 4-phosphopantetheine by phosphopantothenoylcysteine decarboxylase (CoaC). In the fourth step, 4-phosphopantetheine is adenylylated to form dephospho-CoA by the enzyme phosphopantetheine adenylyl transferase (CoaD). Finally, dephospho-CoA is phosphorylated using ATP to coenzyme A by the enzyme dephosphocoenzyme A kinase (CoaE). Since coenzyme A is, in chemical terms, a thiol, it can react with carboxylic acids to form thioesters, thus functioning as an acyl group carrier. CoA assists in transferring fatty acids from the cytoplasm to the mitochondria. A molecule of coenzyme A carrying an acetyl group is also referred to as acetyl-CoA. When it is not attached to an acyl group, it is usually referred to as CoASH or HSCoA. Coenzyme A is also the source of the phosphopantetheine group that is added as a prosthetic group to proteins such as acyl carrier proteins and formyltetrahydrofolate dehydrogenase. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA which is a vital component in cholesterol and ketone synthesis. Furthermore, it contributes an acetyl group to choline to produce acetylcholine in a reaction catalysed by choline acetyltransferase. Its main task is conveying the carbon atoms within the acetyl group to the citric acid cycle to be oxidized for energy production (Wikipedia). Coenzyme A (CoA, CoASH, or HSCoA) is a coenzyme, notable for its role in the synthesis and oxidization of fatty acids, and the oxidation of pyruvate in the citric acid cycle. It is adapted from beta-mercaptoethylamine, panthothenate and adenosine triphosphate. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. Furthermore, it contributes an acetyl group to choline to produce acetylcholine, in a reaction catalysed by choline acetyltransferase. Its main task is conveying the carbon atoms within the acetyl group to the citric acid cycle to be oxidized for energy production. -- Wikipedia [HMDB]. Coenzyme A is found in many foods, some of which are grape, cowpea, pili nut, and summer savory. Coenzyme A (CoASH) is a ubiquitous and essential cofactor, which is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the oxidation of pyruvate in the citric acid cycle and the metabolism of carboxylic acids, including short- and long-chain fatty acids[1]. Coenzyme A (CoASH) is a ubiquitous and essential cofactor, which is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the oxidation of pyruvate in the citric acid cycle and the metabolism of carboxylic acids, including short- and long-chain fatty acids[1]. Coenzyme A, a ubiquitous essential cofactor, is an acyl group carrier and carbonyl-activating group for the citric acid cycle and fatty acid metabolism. Coenzyme A plays a central role in the metabolism of carboxylic acids, including short- and long-chain fatty acids. Coenzyme A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=85-61-0 (retrieved 2024-10-17) (CAS RN: 85-61-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Phosphoethanolamine

2-Aminoethyl dihydrogen phosphate (acd/name 4.0)

C2H8NO4P (141.0190938)


O-Phosphoethanolamine, also known as PEA, phosphorylethanolamine, colamine phosphoric acid or ethanolamine O-phosphate, belongs to the class of organic compounds known as phosphoethanolamines. Phosphoethanolamines are compounds containing a phosphate linked to the second carbon of an ethanolamine. O-Phosphoethanolamine is used in the biosynthesis of two different types of phospholipids: glycerophospholipids and sphingolipids. O-Phosphoethanolamine exists in all living species, ranging from bacteria to plants to humans. Within humans, O-phosphoethanolamine participates in a number of enzymatic reactions. In particular, cytidine triphosphate and O-phosphoethanolamine can be converted into CDP-ethanolamine; which is mediated by the enzyme ethanolamine-phosphate cytidylyltransferase. In addition, O-phosphoethanolamine can be biosynthesized from ethanolamine; which is catalyzed by the enzyme choline/ethanolamine kinase. In humans, O-phosphoethanolamine is involved in phosphatidylcholine biosynthesis. O-phosphoethanolamine is also a product of the metabolism of sphingolipids. In particular, sphinglipids are metabolized in vivo to phosphorylethanolamine and a fatty aldehyde, generally palmitaldehyde. Both metabolites are ultimately converted to glycerophospholipids. The lipids are first phosphorylated by a kinase and then cleaved by the pyridoxal-dependent sphinganine-1-phosphate aldolase. Elevated urine levels of O-Phosphoethanolamine or PEA can be used to help in the diagnosis of Hypophosphatasia (HPP). Reference ranges for urinary PEA vary according to age and somewhat by diet, and follow a circadian rhythm. Outside of the human body, O-phosphoethanolamine has been detected, but not quantified in, several different foods, such as oxheart cabbages, anises, shiitakes, abalones, and teffs. Phosphoryl-ethanolamine, also known as colamine phosphoric acid or ethanolamine phosphate, is a member of the class of compounds known as phosphoethanolamines. Phosphoethanolamines are compounds containing a phosphate linked to the second carbon of an ethanolamine. Phosphoryl-ethanolamine is soluble (in water) and a moderately acidic compound (based on its pKa). Phosphoryl-ethanolamine can be found in a number of food items such as pepper (capsicum), black salsify, cascade huckleberry, and redcurrant, which makes phosphoryl-ethanolamine a potential biomarker for the consumption of these food products. Phosphoryl-ethanolamine can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces. Phosphoryl-ethanolamine exists in all living species, ranging from bacteria to humans. In humans, phosphoryl-ethanolamine is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(4Z,7Z,10Z,13Z,16Z)), phosphatidylethanolamine biosynthesis PE(14:0/20:1(11Z)), phosphatidylethanolamine biosynthesis PE(20:2(11Z,14Z)/20:3(8Z,11Z,14Z)), and phosphatidylethanolamine biosynthesis PE(22:5(7Z,10Z,13Z,16Z,19Z)/16:1(9Z)). Phosphoryl-ethanolamine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, phosphoryl-ethanolamine is found to be associated with traumatic brain injury. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID E009 Phosphorylethanolamine is an endogenous metabolite. Phosphorylethanolamine is an endogenous metabolite.

   

Palmityl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-2-({[({[(3R)-3-[(2-{[2-(hexadecanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}methyl)-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C37H66N7O17P3S (1005.3448576)


Palmityl-CoA is a fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. [HMDB] COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Palmitaldehyde

Palmitoyl aldehyde

C16H32O (240.2453022)


Palmitaldehyde, also known as 1-hexadecanal, is a member of the class of compounds known as fatty aldehydes. Fatty aldehydes are long chain aldehydes with a chain of at least 12 carbon atoms. Thus, palmitaldehyde is considered to be a fatty aldehyde lipid molecule. Palmitaldehyde is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Palmitaldehyde can be found in a number of food items such as rose hip, lambsquarters, pak choy, and swede, which makes palmitaldehyde a potential biomarker for the consumption of these food products. Palmitaldehyde exists in all eukaryotes, ranging from yeast to humans. In humans, palmitaldehyde is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Palmitaldehyde is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Palmitaldehyde is an intermediate in the metabolism of Glycosphingolipid. It is a substrate for Sphingosine-1-phosphate lyase 1. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1]. Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Sphinganine 1-phosphate

(2S,3R)-2-Amino-3-hydroxyoctadecyl dihydrogen phosphoric acid

C18H40NO5P (381.264396)


Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3. [HMDB]. Sphinganine 1-phosphate is found in many foods, some of which are winter squash, chicory roots, star fruit, and butternut squash. Sphinganine 1-phosphate is an intermediate in the metabolism of Glycosphingolipids and sphingolipids. It is a substrate for Sphingosine kinase 1, Lipid phosphate phosphohydrolase 2, Sphingosine kinase 2, Sphingosine-1-phosphate lyase 1, Lipid phosphate phosphohydrolase 1 and Lipid phosphate phosphohydrolase 3.

   

3-Dehydrosphinganine

(+-)-Isomer OF ketodihydrosphingosine

C18H37NO2 (299.2824142)


3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2. [HMDB]. 3-Dehydrosphinganine is found in many foods, some of which are beech nut, muskmelon, broccoli, and groundcherry. 3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2.