Reaction Process: BioCyc:LEISH_PWY3IU-555
lipophosphoglycan (LPG) biosynthesis related metabolites
find 12 related metabolites which is associated with chemical reaction(pathway) lipophosphoglycan (LPG) biosynthesis
H2O + a 6-(N-acetyl-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol ⟶ 6-(α-D-glucosaminyl)-1-phosphatidyl-1D-myo-inositol + H+ + acetate
Guanosine diphosphate
Guanosine diphosphate, also known as gdp or 5-diphosphate, guanosine, is a member of the class of compounds known as purine ribonucleoside diphosphates. Purine ribonucleoside diphosphates are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate can be found in a number of food items such as strawberry, onion-family vegetables, walnut, and scarlet bean, which makes guanosine diphosphate a potential biomarker for the consumption of these food products. Guanosine diphosphate can be found primarily in blood and cerebrospinal fluid (CSF). Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in several metabolic pathways, some of which include betahistine h1-antihistamine action, fexofenadine h1-antihistamine action, clocinizine h1-antihistamine action, and bepotastine h1-antihistamine action. Guanosine diphosphate is also involved in several metabolic disorders, some of which include adenine phosphoribosyltransferase deficiency (APRT), canavan disease, gout or kelley-seegmiller syndrome, and pyruvate dehydrogenase complex deficiency. Moreover, guanosine diphosphate is found to be associated with epilepsy, subarachnoid hemorrhage, neuroinfection, and stroke. Guanosine diphosphate, abbreviated GDP, is a nucleoside diphosphate. It is an ester of pyrophosphoric acid with the nucleoside guanosine. GDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase guanine . Guanosine diphosphate, also known as 5-GDP or 5-diphosphate, guanosine, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Outside of the human body, Guanosine diphosphate has been detected, but not quantified in several different foods, such as devilfish, java plums, green beans, almonds, and orange mints. Guanosine diphosphate is a purine ribonucleoside 5-diphosphate resulting from the formal condensation of the hydroxy group at the 5 position of guanosine with pyrophosphoric acid. COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Guanosine diphosphate mannose
C16H25N5O16P2 (605.0771510000001)
Guanosine diphosphate mannose, also known as gdp-D-mannose or guanosine pyrophosphoric acid mannose, is a member of the class of compounds known as purine nucleotide sugars. Purine nucleotide sugars are purine nucleotides bound to a saccharide derivative through the terminal phosphate group. Guanosine diphosphate mannose is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine diphosphate mannose can be found in a number of food items such as sorrel, common persimmon, citrus, and butternut, which makes guanosine diphosphate mannose a potential biomarker for the consumption of these food products. Guanosine diphosphate mannose exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate mannose is involved in a couple of metabolic pathways, which include fructose and mannose degradation and fructose intolerance, hereditary. Guanosine diphosphate mannose is also involved in fructosuria, which is a metabolic disorder. Guanosine diphosphate mannose or GDP-mannose is a nucleotide sugar that is a substrate for glycosyltransferase reactions in metabolism. This compound is a substrate for enzymes called mannosyltransferases . GDP-mannose is a nucleoside diphosphate sugar that is important in the production of fucosylated oligosaccharides. In particular, GDP-mannose is converted to GDP-fucose, which is the fucose donor in the construction of all mammalian fucosylated glycans. GDP-mannose is transformed to GDP-fucose via three enzymatic reactions carried out by two proteins, GDP-mannose 4,6-dehydratase (GMD) and a second enzyme, GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase. GDP-mannose 4,6-dehydratase (EC 4.2.1.47) catalyzes the chemical reaction: GDP-mannose <--> GDP-4-dehydro-6-deoxy-D-mannose + H2O. The epimerase converts the GDP-4-dehydro-6-deoxy-D-mannose to GDP-fucose (PMID: 12651883). GDP-mannose is also synthesized from mannose 1-phosphate via the enzyme ATP-mannose-1-phosphate-guanyltransferase and GTP. Acquisition and generation of the data is financially supported in part by CREST/JST.
UDP-α-D-N-Acetylglucosamine disodium
Uridine diphosphate-N-acetylglucosamine (uridine 5-diphosphate-GlcNAc, or UDP-Glc-NAc) is an acetylated aminosugar nucleotide. UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc). Nutrient sensing in mammals is done through the hexosamine biosynthetic pathway (HSP), which produces uridine 5-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Mammals respond to nutrient excess by activating O-GlcNAcylation (addition of O-linked N-acetylglucosamine). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Due to the chemical makeup of UDP-GlcNAc, it is well positioned to serve as a glucose sensor in that it is a high-energy compound that requires and/or responds to glucose, amino acid, fatty acid and nucleotide metabolism for synthesis. Elevated levels of O-GlcNAc have an effect on insulin-stimulated glucose uptake. (PMID: 12678487). Uridine 5-diphosphate-GlcNAc (UDP-Glc-NAc )respond to nutrient excess to activate O-GlcNAcylation (addition of O-linked N-acetylglucosamine) in the hexosamine signaling pathway (HSP). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Acquisition and generation of the data is financially supported in part by CREST/JST.
Uridine 5'-diphosphate
Uridine 5-diphosphate, also known as 5-UDP, UDP or uridine diphosphoric acid, belongs to the class of organic compounds known as pyrimidine ribonucleoside diphosphates. These are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. UDP is also classified as a nucleotide diphosphate. It is an ester of pyrophosphoric acid with the nucleoside uridine. UDP consists of a pyrophosphate group, a pentose sugar ribose, and the nucleobase uracil. UDP exists in all living species, ranging from bacteria to plants to humans. In mammals UDP is an important factor in glycogenesis or the formation of glycogen in the liver. Before glucose can be stored as glycogen in the liver and muscles, the enzyme UDP-glucose pyrophosphorylase forms a UDP-glucose unit by combining glucose 1-phosphate with uridine triphosphate, cleaving a pyrophosphate ion in the process. Then, the enzyme glycogen synthase combines UDP-glucose units to form a glycogen chain. UDP is also an important extracellular pyrimidine signaling molecule that mediates diverse biological effects via P1 and P2 purinergic receptors, such as the uptake of thymidine and proliferation of gliomas. UDP plays a key role in the function of Uridine 5-diphospho-glucuronosyltransferases (UDP-glucuronosyltransferases, UGTs) which catalyze the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. UDP-Glucuronosyltransferases are responsible for the process of glucuronidation, a major part of phase II metabolism. The reaction catalyzed by UGT enzymes involves the addition of a glucuronic acid moiety to xenobiotics and is the most important pathway for the human bodys elimination of the most frequently prescribed drugs. It is also the major pathway for foreign chemical (dietary, environmental, pharmaceutical) removal for most drugs, dietary substances, toxins and endogenous substances. UGT is present in humans, other animals, plants, and bacteria. Famously, UGT enzymes are not present in the genus Felis (PMID: 10862526) and this accounts for a number of unusual toxicities in the cat family. Uridine-5-diphosphate, also known as udp or uridine 5-diphosphoric acid, is a member of the class of compounds known as pyrimidine ribonucleoside diphosphates. Pyrimidine ribonucleoside diphosphates are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. Uridine-5-diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Uridine-5-diphosphate can be found in a number of food items such as napa cabbage, lichee, tea leaf willow, and parsnip, which makes uridine-5-diphosphate a potential biomarker for the consumption of these food products. Uridine-5-diphosphate can be found primarily in blood, as well as in human placenta, prostate and thyroid gland tissues. Uridine-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, uridine-5-diphosphate is involved in several metabolic pathways, some of which include morphine action pathway, androgen and estrogen metabolism, estrone metabolism, and amino sugar metabolism. Uridine-5-diphosphate is also involved in several metabolic disorders, some of which include 17-beta hydroxysteroid dehydrogenase III deficiency, acute intermittent porphyria, beta ureidopropionase deficiency, and g(m2)-gangliosidosis: variant B, tay-sachs disease. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Guanosine monophosphate
C10H14N5O8P (363.05799740000003)
Guanosine monophosphate (GMP), also known as 5′-guanidylic acid or guanylic acid (conjugate base guanylate), is a nucleotide that is used as a monomer in RNA. It is an ester of phosphoric acid with the nucleoside guanosine. GMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase guanine; hence it is a ribonucleoside monophosphate. Guanosine monophosphate is commercially produced by microbial fermentation. Guanosine monophosphate, also known as guanylic acid or 5-GMP, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. A guanine nucleotide containing one phosphate group esterified to the sugar moiety and found widely in nature. Guanosine monophosphate exists in all living species, ranging from bacteria to humans. Within humans, guanosine monophosphate participates in a number of enzymatic reactions. In particular, guanosine triphosphate and guanosine monophosphate can be biosynthesized from diguanosine tetraphosphate through its interaction with the enzyme bis(5-nucleosyl)-tetraphosphatase [asymmetrical]. In addition, guanosine monophosphate can be biosynthesized from guanosine diphosphate; which is mediated by the enzyme ectonucleoside triphosphate diphosphohydrolase 5. In humans, guanosine monophosphate is involved in the metabolic disorder called the lesch-nyhan syndrome (lns) pathway. Outside of the human body, guanosine monophosphate has been detected, but not quantified in several different foods, such as common cabbages, tea, winter squash, spearmints, and sugar apples. Guanosine-5-monophosphate, also known as 5-gmp or guanylic acid, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Guanosine-5-monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Guanosine-5-monophosphate can be found in a number of food items such as mustard spinach, swiss chard, watercress, and colorado pinyon, which makes guanosine-5-monophosphate a potential biomarker for the consumption of these food products. Guanosine-5-monophosphate can be found primarily in blood and saliva, as well as throughout most human tissues. Guanosine-5-monophosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine-5-monophosphate is involved in several metabolic pathways, some of which include clarithromycin action pathway, erythromycin action pathway, minocycline action pathway, and tetracycline action pathway. Guanosine-5-monophosphate is also involved in several metabolic disorders, some of which include gout or kelley-seegmiller syndrome, xanthine dehydrogenase deficiency (xanthinuria), aICA-Ribosiduria, and molybdenum cofactor deficiency. Guanosine monophosphate is known as E number reference E626.[7] In the form of its salts, such as disodium guanylate (E627), dipotassium guanylate (E628) and calcium guanylate (E629), are food additives used as flavor enhancers to provide the umami taste.[7] It is often used in synergy with disodium inosinate; the combination is known as disodium 5′-ribonucleotides. Disodium guanylate is often found in instant noodles, potato chips and snacks, savoury rice, tinned vegetables, cured meats, and packet soup. As it is a fairly expensive additive, it is usually not used independently of glutamic acid or monosodium glutamate (MSG), which also contribute umami. If inosinate and guanylate salts are present in a list of ingredients but MSG does not appear to be, the glutamic acid is likely provided as part of another ingredient, such as a processed soy protein complex (hydrolyzed soy protein), autolyzed yeast, or soy sauce. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway. 5'-Guanylic acid (5'-GMP) is involved in several metabolic disorders, including the AICA-ribosiduria pathway, adenosine deaminase deficiency, adenine phosphoribosyltransferase deficiency (aprt), and the 2-hydroxyglutric aciduria pathway.
Acetic acid
Acetic acid is a two-carbon, straight-chain fatty acid. It is the smallest short-chain fatty acid (SCFA) and one of the simplest carboxylic acids. is an acidic, colourless liquid and is the main component in vinegar. Acetic acid has a sour taste and pungent smell. It is an important chemical reagent and industrial chemical that is used in the production of plastic soft drink bottles, photographic film; and polyvinyl acetate for wood glue, as well as many synthetic fibres and fabrics. In households diluted acetic acid is often used as a cleaning agent. In the food industry acetic acid is used as an acidity regulator. Acetic acid is found in all organisms, from bacteria to plants to humans. The acetyl group, derived from acetic acid, is fundamental to the biochemistry of virtually all forms of life. When bound to coenzyme A (to form acetylCoA) it is central to the metabolism of carbohydrates and fats. However, the concentration of free acetic acid in cells is kept at a low level to avoid disrupting the control of the pH of the cell contents. Acetic acid is produced and excreted in large amounts by certain acetic acid bacteria, notably the Acetobacter genus and Clostridium acetobutylicum. These bacteria are found universally in foodstuffs, water, and soil. Due to their widespread presence on fruit, acetic acid is produced naturally as fruits and many other sugar-rich foods spoil. Several species of anaerobic bacteria, including members of the genus Clostridium and Acetobacterium can convert sugars to acetic acid directly. However, Clostridium bacteria are less acid-tolerant than Acetobacter. Even the most acid-tolerant Clostridium strains can produce acetic acid in concentrations of only a few per cent, compared to Acetobacter strains that can produce acetic acid in concentrations up to 20\\%. Acetic acid is also a component of the vaginal lubrication of humans and other primates, where it appears to serve as a mild antibacterial agent. Acetic acid can be found in other biofluids such as urine at low concentrations. Urinary acetic acid is produced by bacteria such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus (PMID: 22292465). Acetic acid concentrations greater than 30 uM/mM creatinine in the urine can indicate a urinary tract infection, which typically suggests the presence of E. coli or Klebshiella pneumonia in the urinary tract. (PMID: 24909875) Acetic acid is also produced by other bacteria such as Akkermansia, Bacteroidetes, Bifidobacterium, Prevotella and Ruminococcus (PMID: 20444704; PMID: 22292465). G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents It is used for smoking meats and fish C254 - Anti-Infective Agent KEIO_ID A029
Water
Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .
Uridine diphosphategalactose
Uridine diphosphategalactose (UDPgal) is a nucleoside diphosphate sugar which can be epimerized into UDPglucose for entry into the mainstream of carbohydrate metabolism. UDPgal is a pivotal compound in the metabolism of galactose. UDPgal is a product of the galactose-l-phosphate uridyl transferase (EC 2.7.7.10) reaction but may also be made from Glucose-l-P, involving uridine diphosphate galactose-4-epimerase (EC 5.1.3.2). UDPgal is the necessary galactosyl donor of galactose in the metabolism to incorporate it into complex oligosaccharides, glycoproteins and glycolipids (galactosides). Defective galactosylation of complex glycoconjugates exists in tissues from galactosemic patients. There is a tendency for galactosemic red cell UDPgal to be in the low normal range with a high uridine diphosphate glucose to UDP-gal ratio. This may reflect an inability of red cell UDPgal-4-epimerase to maintain a normal ratio and consequently higher levels of UDPgal. In the more complex white blood cells and cultured fibroblasts, the UDPgal content and the uridine diphosphate glucose to UDPgal ratio of galactosemics are normal. Therefore, defective galactosylation observed in galactosemic fibroblasts must result from a defect in the transfer of galactose from UDPgal to these moieties. (PMID: 2122114, 7671968) [HMDB] Uridine diphosphategalactose (UDPgal) is a nucleoside diphosphate sugar which can be epimerized into UDPglucose for entry into the mainstream of carbohydrate metabolism. UDPgal is a pivotal compound in the metabolism of galactose. UDPgal is a product of the galactose-l-phosphate uridyl transferase (EC 2.7.7.10) reaction but may also be made from Glucose-l-P, involving uridine diphosphate galactose-4-epimerase (EC 5.1.3.2). UDPgal is the necessary galactosyl donor of galactose in the metabolism to incorporate it into complex oligosaccharides, glycoproteins and glycolipids (galactosides). Defective galactosylation of complex glycoconjugates exists in tissues from galactosemic patients. There is a tendency for galactosemic red cell UDPgal to be in the low normal range with a high uridine diphosphate glucose to UDP-gal ratio. This may reflect an inability of red cell UDPgal-4-epimerase to maintain a normal ratio and consequently higher levels of UDPgal. In the more complex white blood cells and cultured fibroblasts, the UDPgal content and the uridine diphosphate glucose to UDPgal ratio of galactosemics are normal. Therefore, defective galactosylation observed in galactosemic fibroblasts must result from a defect in the transfer of galactose from UDPgal to these moieties. (PMID: 2122114, 7671968). Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Dolichol phosphate
C25H45O4P (440.30553000000003)
COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Hydrogen Ion
Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])