NCBI Taxonomy: 461617

Penianthus (ncbi_taxid: 461617)

found 63 associated metabolites at genus taxonomy rank level.

Ancestor: Burasaieae

Child Taxonomies: Penianthus zenkeri, Penianthus longifolius, Penianthus patulinervis

Berberine

16,17-dimethoxy-5,7-dioxa-13-azoniapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-1(13),2,4(8),9,14,16,18,20-octaene

[C20H18NO4]+ (336.1236)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials [Raw Data] CBA98_Berberine_pos_50eV.txt [Raw Data] CBA98_Berberine_pos_10eV.txt [Raw Data] CBA98_Berberine_pos_20eV.txt [Raw Data] CBA98_Berberine_pos_40eV.txt [Raw Data] CBA98_Berberine_pos_30eV.txt Berberine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2086-83-1 (retrieved 2024-09-04) (CAS RN: 2086-83-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

[C21H22NO4]+ (352.1549)


Annotation level-1 Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of). KEIO_ID P071; [MS2] KO009210 KEIO_ID P071

   

Isocolumbin

1,4-Etheno-3H,7H-benzo[1,2-c:3,4-c]dipyran-3,7-dione, 9-(3-furanyl)-1,4,4a,5,6,6a,9,10,10a,10b-decahydro-4-hydroxy-4a,10a-dimethyl-, [1R-(1.alpha.,4.beta.,4a.alpha.,6a.beta.,9.beta.,10a.beta.,10b.alpha.)]-

C20H22O6 (358.1416)


Isocolumbin is found in fruits. Isocolumbin is isolated from Dioscoreophyllum cumminsii (serendipity berry). Isolated from Dioscoreophyllum cumminsii (serendipity berry). Isocolumbin is found in fruits. Columbin is a natural product found in Tinospora capillipes and Cleidion with data available. Columbin is an organic heterotricyclic compound and an organooxygen compound. (2S,4AR,6aR,7R,10R,10aS,10bS)-2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4a,5,6,6a,7,10,10a,10b-octahydro-1H-10,7-(epoxymethano)benzo[f]isochromene-4,12(2H)-dione is a natural product found in Vateria indica, Penianthus zenkeri, and other organisms with data available. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2]. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2].

   

N-trans-feruloyltyramine

(Z,2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314)


N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Crustecdysone

2-[(4-hydroxyphenyl)methyl]propanedinitrile

C27H44O7 (480.3087)


20-hydroxyecdysone is an ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. It has a role as a plant metabolite and an animal metabolite. It is a 20-hydroxy steroid, an ecdysteroid, a 14alpha-hydroxy steroid, a 3beta-sterol, a 2beta-hydroxy steroid, a 22-hydroxy steroid, a 25-hydroxy steroid and a phytoecdysteroid. It is functionally related to an ecdysone. 20-Hydroxyecdysone is a natural product found in Asparagus filicinus, Trichobilharzia ocellata, and other organisms with data available. A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. Crustecdysone is found in crustaceans. Crustecdysone is isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones An ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Pseudopalmatine

5,6-Dihydro-8-demethylcoralyne

C21H22NO4 (352.1549)


   

20-Hydroxyecdysone

20-Hydroxyecdysone

C27H44O7 (480.3087)


   
   

Tinophyllol

Tinophyllol

C21H26O6 (374.1729)


Tinophyllol is a natural product found in Penianthus zenkeri and Arcangelisia flava with data available.

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Pseudojatrorrhizine

Pseudojatrorrhizine

C20H19NO4 (337.1314)


   

Berberine

16,17-dimethoxy-5,7-dioxa-13-azoniapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-1(13),2,4(8),9,14,16,18,20-octaene

[C20H18NO4]+ (336.1236)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2521; CONFIDENCE confident structure IPB_RECORD: 821; CONFIDENCE confident structure

   

Columbin

(2S,4AR,6aR,7R,10R,10aS,10bS)-2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4a,5,6,6a,7,10,10a,10b-octahydro-1H-10,7-(epoxymethano)benzo[f]isochromene-4,12(2H)-dione

C20H22O6 (358.1416)


Columbin is an organic heterotricyclic compound and an organooxygen compound. (2S,4AR,6aR,7R,10R,10aS,10bS)-2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4a,5,6,6a,7,10,10a,10b-octahydro-1H-10,7-(epoxymethano)benzo[f]isochromene-4,12(2H)-dione is a natural product found in Vateria indica, Penianthus zenkeri, and other organisms with data available. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2]. Columbin is an orally active diterpenoid furanolactone from Calumbae radix, has anti-inflammatory and anti-trypanosomal effects. Columbin selectively inhibits COX-2 (EC50=53.1 μM) over COX-1 (EC50=327 μM)[1][2].

   

Crustecdysone

20-Hydroxyecdysone

C27H44O7 (480.3087)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials SubCategory_DNP: : The sterols, Cholestanes Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].

   
   

Palmatin

Palmatine

[C21H22NO4]+ (352.1549)


Origin: Plant; Formula(Parent): C21H22NO4; Bottle Name:Palmatine chloride; PRIME Parent Name:Palmatine; PRIME in-house No.:V0288; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

C21H22NO4+ (352.1549)


Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of).

   
   
   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

2,9,10-Trimethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-3-one

2,9,10-Trimethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-3-one

C20H19NO4 (337.1314)


   

Pseudopalmatine

2,3,10,11-tetramethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-7-ium

C21H22NO4+ (352.1549)


A natural product found in Annona glabra.

   

2,9,10-trimethoxy-6,7-dihydro-5H-isoquinolino[2,1-b]isoquinolin-7-ium-3-one

2,9,10-trimethoxy-6,7-dihydro-5H-isoquinolino[2,1-b]isoquinolin-7-ium-3-one

C20H20NO4+ (338.1392)


   

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

C20H18NO4+ (336.1236)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isocolumbin

(1S,2R,3R,5R,8R,11S,12S)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.02,11.03,8]hexadec-15-ene-7,13-dione

C20H22O6 (358.1416)


   

(1r,2s,3s,5s,8r,11r,12r)-5-(furan-3-yl)-3,11-dimethyl-12-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2s,3s,5s,8r,11r,12r)-5-(furan-3-yl)-3,11-dimethyl-12-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C26H32O11 (520.1945)


   

methyl (2s,4as,6ar,9r,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-9-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

methyl (2s,4as,6ar,9r,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-9-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C27H36O11 (536.2258)


   

(1s,2r,3r,5r,8s,11s,12s)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1s,2r,3r,5r,8s,11s,12s)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O6 (358.1416)


   

2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylic acid

2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylic acid

C20H24O5 (344.1624)


   

(1r,2s,3s,5s,8s,11r,12r)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2s,3s,5s,8s,11r,12r)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O6 (358.1416)


   

methyl (2s,4as,6ar,9r,10as,10bs)-2-(furan-3-yl)-9-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

methyl (2s,4as,6ar,9r,10as,10bs)-2-(furan-3-yl)-9-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C21H26O6 (374.1729)


   

(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

(2e)-3-(4-hydroxy-3-methoxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C26H34O10 (506.2152)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4as,6ar,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2s,4as,6ar,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C26H34O10 (506.2152)


   

(1r,2r,3s,8r,11r,12s)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2r,3s,8r,11r,12s)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O6 (358.1416)


   

(1s,2r,5s,8s,10s,11s,13s,16r)-8-(furan-3-yl)-1,16-dihydroxy-2,10-dimethyl-7,14-dioxatetracyclo[11.2.1.0²,¹¹.0⁵,¹⁰]hexadecane-6,15-dione

(1s,2r,5s,8s,10s,11s,13s,16r)-8-(furan-3-yl)-1,16-dihydroxy-2,10-dimethyl-7,14-dioxatetracyclo[11.2.1.0²,¹¹.0⁵,¹⁰]hexadecane-6,15-dione

C20H24O7 (376.1522)


   

8-(furan-3-yl)-1,16-dihydroxy-2,10-dimethyl-7,14-dioxatetracyclo[11.2.1.0²,¹¹.0⁵,¹⁰]hexadecane-6,15-dione

8-(furan-3-yl)-1,16-dihydroxy-2,10-dimethyl-7,14-dioxatetracyclo[11.2.1.0²,¹¹.0⁵,¹⁰]hexadecane-6,15-dione

C20H24O7 (376.1522)


   

3-hydroxy-4,15,16-trimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-10-ium

3-hydroxy-4,15,16-trimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-10-ium

[C21H26NO4]+ (356.1862)


   

(9s)-3-hydroxy-4,15,16-trimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-10-ium

(9s)-3-hydroxy-4,15,16-trimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-10-ium

[C21H26NO4]+ (356.1862)


   

(1s,4s,7r,9r,10r,12s)-7-(furan-3-yl)-9-methyl-6,13-dioxatetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-5,15-dione

(1s,4s,7r,9r,10r,12s)-7-(furan-3-yl)-9-methyl-6,13-dioxatetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-5,15-dione

C19H22O5 (330.1467)


   

methyl (2s,4as,6ar,7r,10as,10bs)-2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

methyl (2s,4as,6ar,7r,10as,10bs)-2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C21H26O6 (374.1729)


   

5-(furan-3-yl)-3,11-dimethyl-12-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

5-(furan-3-yl)-3,11-dimethyl-12-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C26H32O11 (520.1945)


   

3,4,11-trimethoxy-7,8-dihydro-6-azatetraphen-10-one

3,4,11-trimethoxy-7,8-dihydro-6-azatetraphen-10-one

C20H19NO4 (337.1314)


   

7-(furan-3-yl)-9-methyl-6,13-dioxatetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-5,15-dione

7-(furan-3-yl)-9-methyl-6,13-dioxatetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-5,15-dione

C19H22O5 (330.1467)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

(1r,2s,3s,5s,8s,10s,11s,12r)-5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2s,3s,5s,8s,10s,11s,12r)-5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O7 (374.1365)


   

(1r,2s,3s,5s,8r,10s,11s,12s)-5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2s,3s,5s,8r,10s,11s,12s)-5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O7 (374.1365)


   

methyl 2-(furan-3-yl)-9-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

methyl 2-(furan-3-yl)-9-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C21H26O6 (374.1729)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (2s,4as,6ar,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl (2s,4as,6ar,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C31H42O14 (638.2574)


   

methyl 2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

methyl 2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-9-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C27H36O11 (536.2258)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(2s,4as,6ar,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylic acid

(2s,4as,6ar,10as,10bs)-2-(furan-3-yl)-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,9h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylic acid

C20H24O5 (344.1624)


   

methyl 2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

methyl 2-(furan-3-yl)-7-hydroxy-6a,10b-dimethyl-4-oxo-1h,2h,4ah,5h,6h,10h,10ah-naphtho[2,1-c]pyran-7-carboxylate

C21H26O6 (374.1729)


   

2,3,11-trimethoxy-7,8-dihydro-6-azatetraphen-10-one

2,3,11-trimethoxy-7,8-dihydro-6-azatetraphen-10-one

C20H19NO4 (337.1314)


   

(1r,2r,3s,8r,11r,12r)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2r,3s,8r,11r,12r)-5-(furan-3-yl)-12-hydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O6 (358.1416)


   

5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O7 (374.1365)


   

(1r,2s,3s,5s,8r,10s,11s,12r)-5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2s,3s,5s,8r,10s,11s,12r)-5-(furan-3-yl)-10,12-dihydroxy-3,11-dimethyl-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C20H22O7 (374.1365)


   

(1r,2s,3s,5s,8s,11r,12r)-5-(furan-3-yl)-3,11-dimethyl-12-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

(1r,2s,3s,5s,8s,11r,12r)-5-(furan-3-yl)-3,11-dimethyl-12-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6,14-dioxatetracyclo[10.2.2.0²,¹¹.0³,⁸]hexadec-15-ene-7,13-dione

C26H32O11 (520.1945)