NCBI Taxonomy: 1461607

Boswellia papyrifera (ncbi_taxid: 1461607)

found 41 associated metabolites at species taxonomy rank level.

Ancestor: Boswellia

Child Taxonomies: none taxonomy data.

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Elaidic acid

trans-Delta(9)-Octadecenoic acid

C18H34O2 (282.2559)


Elaidic acid, also known as (9E)-octadecenoic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Elaidic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and occurs in small amounts in caprine and bovine milk (very roughly 0.1 \\\\% of the fatty acids) and some meats. It is the trans isomer of oleic acid. The name of the elaidinization reaction comes from elaidic acid. Elaidic acid increases CETP activity, which in turn raises VLDL and lowers HDL cholesterol (Wikipedia). COVID info from PDB, Protein Data Bank Minor constituent of plant oils Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent.

   

beta-Elemonic acid

(2S)-6-methyl-2-[(5S,10S,13S,14S,17R)-4,4,10,13,14-pentamethyl-3-oxo-1,2,5,6,7,11,12,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl]hept-5-enoic acid

C30H46O3 (454.3447)


beta-Elemonic acid is found in herbs and spices. beta-Elemonic acid is a constituent of elemi resin. beta-Elemonic acid is a flavouring agent beta-Elemonic acid is a natural product found in Ganoderma tsugae, Ganoderma lucidum, and Boswellia with data available. β-Elemonic acid is a triterpene isolated from Boswellia carterii. β-Elemonic acid induces cell apoptosis, reactive oxygen species (ROS) and COX-2 expression and inhibits prolyl endopeptidase. β-Elemonic acid exhibits anticancer and anti-inflammatory effects[1][2]. β-Elemonic acid is a triterpene isolated from Boswellia carterii. β-Elemonic acid induces cell apoptosis, reactive oxygen species (ROS) and COX-2 expression and inhibits prolyl endopeptidase. β-Elemonic acid exhibits anticancer and anti-inflammatory effects[1][2].

   

Boswellic acid

(3R,4R,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C30H48O3 (456.3603)


Boswellic acid (BA) is an active component of Boswellia serrata (also known as Salai guggul). Extensive research in the past 30 years identified the active component of this resin as BA (a pentacyclic triterpenic acid) and its derivatives (acetyl-beta-boswellic acid, 11-keto-beta-boswellic acid and acetyl-11-keto-beta-boswellic acid). In animal models of inflammation, BA has been shown to be an effective adjuvant mitigating bovine serum albumin-induced arthritis and osteoarthritis. The anti-arthritic potential of BA is a result of its anti-inflammatory activity, mediated through inhibition of NF-kB, COX-2 and 5-LOX. ((PMID: 17475558, 3429205). Boswellic acid is a triterpenoid. beta-Boswellic acid is a natural product found in Cyclocarya paliurus, Boswellia papyrifera, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2]. β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2]. β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2].

   

11-Keto-beta-boswellic acid

(3R,4R,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bS)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C30H46O4 (470.3396)


11-Keto-beta-boswellic acid is a natural product found in Boswellia papyrifera, Boswellia sacra, and Boswellia serrata with data available. See also: Indian frankincense (part of). 11-Keto-beta-boswellic acid is found in herbs and spices. 11-Keto-beta-boswellic acid is a constituent of Boswellia serrata (Indian olibanum). Constituent of Boswellia serrata (Indian olibanum). 11-Keto-beta-boswellic acid is found in herbs and spices. 11-Keto-beta-boswellic acid (11-Keto-β-boswellic acid) is a pentacyclic triterpenic acid of the oleogum resin from the bark of the Boswellia serrate tree, popularly known as Indian Frankincense. 11-Keto-beta-boswellic acid has the anti-inflammatory activity is primarily due to inhibit 5-lipoxygenase (5-LOX) and subsequent leukotriene and nuclear factor-kappa B (NF-κB) activation and tumor necrosis factor alpha generation production[1]. 11-Keto-beta-boswellic acid (11-Keto-β-boswellic acid) is a pentacyclic triterpenic acid of the oleogum resin from the bark of the Boswellia serrate tree, popularly known as Indian Frankincense. 11-Keto-beta-boswellic acid has the anti-inflammatory activity is primarily due to inhibit 5-lipoxygenase (5-LOX) and subsequent leukotriene and nuclear factor-kappa B (NF-κB) activation and tumor necrosis factor alpha generation production[1]. 11-Keto-beta-boswellic acid (11-Keto-β-boswellic acid) is a pentacyclic triterpenic acid of the oleogum resin from the bark of the Boswellia serrate tree, popularly known as Indian Frankincense. 11-Keto-beta-boswellic acid has the anti-inflammatory activity is primarily due to inhibit 5-lipoxygenase (5-LOX) and subsequent leukotriene and nuclear factor-kappa B (NF-κB) activation and tumor necrosis factor alpha generation production[1].

   

3-Acetyl-11-keto-beta-boswellic acid

3-(acetyloxy)-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C32H48O5 (512.3502)


   

b-Boswellic acid

3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C30H48O3 (456.3603)


Constituent of frankincense (Boswellia subspecies) and olibanum oil β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2]. β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2]. β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2].

   

AcKBA

(3R,4R,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bS)-3-acetoxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C32H48O5 (512.3502)


3-Acetyl-11-keto-beta-boswellic acid is a triterpenoid. 3-Acetyl-11-keto-beta-boswellic acid is a natural product found in Boswellia papyrifera, Boswellia sacra, and Boswellia serrata with data available. See also: Indian frankincense (part of). AKBA (Acetyl-11-keto-β-boswellic acid) is an active triterpenoid compound from the extract of Boswellia serrate and a novel Nrf2 activator. AKBA (Acetyl-11-keto-β-boswellic acid) is an active triterpenoid compound from the extract of Boswellia serrate and a novel Nrf2 activator. AKBA (Acetyl-11-keto-β-boswellic acid) is an active triterpenoid compound from the extract of Boswellia serrate and a novel Nrf2 activator.

   

beta-Elemonic acid

(2S)-6-methyl-2-[(5S,10S,13S,14S,17R)-4,4,10,13,14-pentamethyl-3-oxo-1,2,5,6,7,11,12,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl]hept-5-enoic acid

C30H46O3 (454.3447)


Constituent of elemi resin. Flavouring agent. beta-Elemonic acid is found in herbs and spices. β-Elemonic acid is a triterpene isolated from Boswellia carterii. β-Elemonic acid induces cell apoptosis, reactive oxygen species (ROS) and COX-2 expression and inhibits prolyl endopeptidase. β-Elemonic acid exhibits anticancer and anti-inflammatory effects[1][2]. β-Elemonic acid is a triterpene isolated from Boswellia carterii. β-Elemonic acid induces cell apoptosis, reactive oxygen species (ROS) and COX-2 expression and inhibits prolyl endopeptidase. β-Elemonic acid exhibits anticancer and anti-inflammatory effects[1][2].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

elemol

elemol

C15H26O (222.1984)


A sesquiterpenoid that is isopropanol which is substituted at position 2 by a (3S,4S)-3-isopropenyl-4-methyl-4-vinylcyclohexyl group.

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2559)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Elaidic Acid

Oleic acid, from tall oil fatty acids

C18H34O2 (282.2559)


A 9-octadecenoic acid and the trans-isomer of oleic acid. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS It is used as a food additive . Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent.

   

11-Keto β-Boswellic Acid

(3R,4R,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bS)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C30H46O4 (470.3396)


11-Keto-beta-boswellic acid (11-Keto-β-boswellic acid) is a pentacyclic triterpenic acid of the oleogum resin from the bark of the Boswellia serrate tree, popularly known as Indian Frankincense. 11-Keto-beta-boswellic acid has the anti-inflammatory activity is primarily due to inhibit 5-lipoxygenase (5-LOX) and subsequent leukotriene and nuclear factor-kappa B (NF-κB) activation and tumor necrosis factor alpha generation production[1]. 11-Keto-beta-boswellic acid (11-Keto-β-boswellic acid) is a pentacyclic triterpenic acid of the oleogum resin from the bark of the Boswellia serrate tree, popularly known as Indian Frankincense. 11-Keto-beta-boswellic acid has the anti-inflammatory activity is primarily due to inhibit 5-lipoxygenase (5-LOX) and subsequent leukotriene and nuclear factor-kappa B (NF-κB) activation and tumor necrosis factor alpha generation production[1]. 11-Keto-beta-boswellic acid (11-Keto-β-boswellic acid) is a pentacyclic triterpenic acid of the oleogum resin from the bark of the Boswellia serrate tree, popularly known as Indian Frankincense. 11-Keto-beta-boswellic acid has the anti-inflammatory activity is primarily due to inhibit 5-lipoxygenase (5-LOX) and subsequent leukotriene and nuclear factor-kappa B (NF-κB) activation and tumor necrosis factor alpha generation production[1].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

(2s)-2-[(1s,3as,9as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2s)-2-[(1s,3as,9as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C30H46O3 (454.3447)


   

2-[(3,4-dihydroxy-6-{3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methoxy]-6-methyloxane-3,4,5-triol

2-[(3,4-dihydroxy-6-{3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methoxy]-6-methyloxane-3,4,5-triol

C33H44O16 (696.2629)


   

(2s)-2-[(1r,3as,5as,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2s)-2-[(1r,3as,5as,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C30H46O3 (454.3447)


   

11-keto-β-boswellic acid

NA

C30H46O4 (470.3396)


{"Ingredient_id": "HBIN000461","Ingredient_name": "11-keto-\u03b2-boswellic acid","Alias": "NA","Ingredient_formula": "C30H46O4","Ingredient_Smile": "CC1CCC2(CCC3(C(=CC(=O)C4C3(CCC5C4(CCC(C5(C)C(=O)O)O)C)C)C2C1C)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "36047","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(3e,7z)-4,8,12,15,15-pentamethylbicyclo[9.3.1]pentadeca-3,7-dien-12-ol

(3e,7z)-4,8,12,15,15-pentamethylbicyclo[9.3.1]pentadeca-3,7-dien-12-ol

C20H34O (290.261)


   

(1r,3ar,5as,5br,7ar,8r,9r,11ar,11br,13ar,13br)-9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylic acid

(1r,3ar,5as,5br,7ar,8r,9r,11ar,11br,13ar,13br)-9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylic acid

C32H50O5 (514.3658)


   

methyl (3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylate

methyl (3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylate

C31H48O4 (484.3552)


   

(2s,3r,4s,5s,6r)-2-{3-[(1e)-2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{3-[(1e)-2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C27H34O12 (550.205)


   

(6e)-7,11-dimethyldodeca-1,6,10-trien-3-yl acetate

(6e)-7,11-dimethyldodeca-1,6,10-trien-3-yl acetate

C16H26O2 (250.1933)


   

methyl (1r,3ar,5as,5br,7ar,8r,9r,11ar,11br,13ar,13br)-9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylate

methyl (1r,3ar,5as,5br,7ar,8r,9r,11ar,11br,13ar,13br)-9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylate

C33H52O5 (528.3815)


   

2-{3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxane-3,4,5-triol

2-{3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C27H34O12 (550.205)


   

(3r,4r,6ar,6bs,8ar,11r,12s,14bs)-3-(acetyloxy)-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

(3r,4r,6ar,6bs,8ar,11r,12s,14bs)-3-(acetyloxy)-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

C32H48O5 (512.3502)


   

(+-)-propylene glycol

(+-)-propylene glycol

C18H34O2 (282.2559)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

2-{3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-enoic acid

2-{3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl}-6-methylhept-5-enoic acid

C30H46O3 (454.3447)


   

3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-methylidene-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-methylidene-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

C31H48O3 (468.3603)


   

(2s)-2-[(1s,3as,5ar,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2s)-2-[(1s,3as,5ar,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C30H46O3 (454.3447)


   

3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

C30H46O4 (470.3396)


   

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6s)-3,4-dihydroxy-6-{3-[(1e)-2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

(2r,3r,4r,5r,6s)-2-{[(2r,3s,4s,5r,6s)-3,4-dihydroxy-6-{3-[(1e)-2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]methoxy}-6-methyloxane-3,4,5-triol

C33H44O16 (696.2629)


   

(4r,6ar,8ar,12s,12ar,14br)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-4-carboxylic acid

(4r,6ar,8ar,12s,12ar,14br)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-4-carboxylic acid

C30H48O3 (456.3603)


   

9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylic acid

9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylic acid

C32H50O5 (514.3658)


   

(3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-methylidene-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

(3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-methylidene-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

C31H48O3 (468.3603)


   

(3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-(acetyloxy)-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

(3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-(acetyloxy)-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

C32H48O5 (512.3502)


   

(8e)-heptadec-8-en-1-yl hydrogen carbonate

(8e)-heptadec-8-en-1-yl hydrogen carbonate

C18H34O3 (298.2508)


   

methyl 3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylate

methyl 3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylate

C31H48O4 (484.3552)


   

(1r,3ar,5as,5br,7ar,8r,9r,11ar,11br,13ar,13bs)-9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylic acid

(1r,3ar,5as,5br,7ar,8r,9r,11ar,11br,13ar,13bs)-9-(acetyloxy)-5a-(hydroxymethyl)-3a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-8-carboxylic acid

C32H50O5 (514.3658)