NCBI Taxonomy: 110158

Sordariales incertae sedis (ncbi_taxid: 110158)

found 93 associated metabolites at no rank taxonomy rank level.

Ancestor: Sordariales

Child Taxonomies: Madurella, Guanomyces, Batnamyces, Remersonia, Kionochaeta, Papulaspora, Fusoidispora, Ascolacicola, Edmundmasonia, Roselliniella, Monotosporella, Cuspidatispora, Ramophialophora, [Phialophora] cyclaminis, [Taeniolella] phialosperma, [Chrysosporium] synchronum

4-Hydroxybenzoic acid

4-hydroxybenzoic acid

C7H6O3 (138.03169259999999)


4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in A√ßa√≠ oil, obtained from the fruit of the a√ßa√≠ palm (Euterpe oleracea), at relatively high concetrations (892¬±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843). Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid DVN38-Z and 2,4-Hexadienoic acid GMZ10-P. The taste is more detectable than for those preservatives. Effectiveness increases with chain length of the alcohol, but for some microorganisms this reduces cell permeability and thus counteracts the increased efficiency. 4-Hydroxybenzoic acid is found in many foods, some of which are chicory, corn, rye, and black huckleberry. 4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate. 4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ... A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. 4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Tyrosol

4-hydroxy-Benzeneethanol;4-Hydroxyphenylethanol;beta-(4-Hydroxyphenyl)ethanol

C8H10O2 (138.06807600000002)


Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

4-hydroxyphenylacetate

2-(4-hydroxyphenyl)acetic acid

C8H8O3 (152.0473418)


p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic.  p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate.  p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

Emodin

1,3,8-trihydroxy-6-methyl-anthracene-9,10-dione;3-METHYL-1,6,8-TRIHYDROXYANTHRAQUINONE

C15H10O5 (270.052821)


Emodin appears as orange needles or powder. (NTP, 1992) Emodin is a trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. It has a role as a tyrosine kinase inhibitor, an antineoplastic agent, a laxative and a plant metabolite. It is functionally related to an emodin anthrone. It is a conjugate acid of an emodin(1-). Emodin has been investigated for the treatment of Polycystic Kidney. Emodin is a natural product found in Rumex dentatus, Rhamnus davurica, and other organisms with data available. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia) Emodin has been shown to exhibit anti-inflammatory, signalling, antibiotic, muscle building and anti-angiogenic functions (A3049, A7853, A7854, A7855, A7857). Purgative anthraquinone found in several plants, especially RHAMNUS PURSHIANA. It was formerly used as a laxative, but is now used mainly as a tool in toxicity studies. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics Present in Cascara sagrada CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 ORIGINAL_PRECURSOR_SCAN_NO 5094; CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 [Raw Data] CB029_Emodin_pos_50eV_CB000015.txt [Raw Data] CB029_Emodin_pos_10eV_CB000015.txt [Raw Data] CB029_Emodin_pos_20eV_CB000015.txt [Raw Data] CB029_Emodin_pos_30eV_CB000015.txt [Raw Data] CB029_Emodin_pos_40eV_CB000015.txt [Raw Data] CB029_Emodin_neg_50eV_000008.txt [Raw Data] CB029_Emodin_neg_20eV_000008.txt [Raw Data] CB029_Emodin_neg_40eV_000008.txt [Raw Data] CB029_Emodin_neg_30eV_000008.txt [Raw Data] CB029_Emodin_neg_10eV_000008.txt CONFIDENCE standard compound; ML_ID 38 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].

   

Citrinin

(3R-trans)-4,6-Dihydro-8-hydroxy-3,4,5-trimethyl-6-oxo-3H-2-benzopyran-7-carboxylic acid

C13H14O5 (250.08411940000002)


Citrinin is a mycotoxin originally isolated from Penicillium citrinum. It has since been found to be produced by a variety of other fungi which are found or used in the production of human foods, such as grain, cheese, sake and red pigments. Citrinin has also been found in commercial red yeast rice supplements, and also in Aspergillus niveus and Aspergillus terreus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].

   

Desglymidodrine

alpha-(Aminomethyl)-2,5-dimethoxybenzenemethanol

C10H15NO3 (197.105188)


Desglymidodrine is a metabolite of midodrine. Midodrine (brand names Amatine, ProAmatine, Gutron) is a vasopressor/antihypotensive agent. Midodrine was approved in the United States by the Food and Drug Administration (FDA) in 1996 for the treatment of dysautonomia and orthostatic hypotension. In August 2010, the FDA proposed withdrawing this approval because the manufacturer, Shire plc, has failed to complete required studies after the medicine reached the market. (Wikipedia) Midodrine, a prodrug, is converted after oral administration into its active drug, desglymidodrine, which acts as an alpha(1)-adrenoceptor stimulant. (PMID: 17901021) Through selective alpha(1)-adrenergic receptor-binding, desglymidodrine, the active metabolite of midodrine, raises blood pressure by enhancing venous and arterial tone. (PMID: 12904123) Desglymidodrine (ST 1059), the active metabolite of Midodrine (HY-12749), is a selective α1-adrenoceptor agonist. Desglymidodrine is an effective arterial and venous vasoconstrictor and can be used to regulate blood pressure[1][2].

   

Mevalonolactone

(+/-) tetrahydro-4-hydroxy-4-methyl-2H-pyran-2-one

C6H10O3 (130.062991)


Mevalonolactone is a substance obtained by the dehydration of mevalonic acid and is rapidly converted back into mevalonic acid in water. Mevaolonic acid exists in equilibrium with mevalolactone, which is formed by internal condensation of mevalonic acids terminal alcohol and carboxylic acid functional groups. Mevalonic acid is a key intermediate in the biosynthesis of terpenes and steroids. Mevalonolactone is known ot inhibit HMG-CoA reductase activity. [HMDB] Mevalonolactone is a substance obtained by the dehydration of mevalonic acid and is rapidly converted back into mevalonic acid in water. Mevaolonic acid exists in equilibrium with mevalolactone, which is formed by internal condensation of mevalonic acids terminal alcohol and carboxylic acid functional groups. Mevalonic acid is a key intermediate in the biosynthesis of terpenes and steroids. Mevalonolactone is known ot inhibit HMG-CoA reductase activity. DL-Mevalonolactone ((±)-Mevalonolactone;Mevalolactone) is the δ-lactone form of mevalonic acid, a precursor in the mevalonate pathway. DL-Mevalonolactone (Mevalonolactone) decreases mitochondrial membrane potential (?Ψm), NAD(P)H content and the capacity to retain Ca2+ in the brain, besides inducing mitochondrial swelling[1][2].

   

Isoeugenitin

5-Hydroxy-7-methoxy-2,8-dimethyl-4H-1-benzopyran-4-one

C12H12O4 (220.0735552)


Constituent of Eugenia caryophyllata (clove). Isoeugenitin is found in herbs and spices and cloves. Isoeugenitin is found in cloves. Isoeugenitin is a constituent of Eugenia caryophyllata (clove)

   

4-Hydroxyphenylacetic acid

p-Hydroxyphenyl acetic acid

C8H8O3 (152.0473418)


4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

cis-4-Hydroxymellein

cis-3S,4S-4-Hydroxymellein

C10H10O4 (194.057906)


   

methyl 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate

methyl 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate

C16H12O5 (284.0684702)


A member of the class of xanthones that is 9H-xanthene substituted by a hydroxy group at position 8. a methyl group at position 6, an oxo group at position 9 and a methoxy carbonyl at position 1. It has been isolated from the fungus Aspergillus sydowii.

   

Citrinin

(-)-Citrinin

C13H14O5 (250.08411940000002)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 11 D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].

   

Emodin

9,10-Anthracenedione, 1,3,8-trihydroxy-6-methyl- (9CI)

C15H10O5 (270.052821)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics CONFIDENCE isolated standard relative retention time with respect to 9-anthracene Carboxylic Acid is 1.288 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.291 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.286 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.293 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].

   

4-hydroxybenzoate

4-Hydroxybenzoic acid

C7H6O3 (138.03169259999999)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

p-Hydroxybenzoic acid

p-Hydroxybenzoic acid

C7H6O3 (138.03169259999999)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Mevalonolactone

D-Mevalonolactone

C6H10O3 (130.062991)


   

Isoeugenitin

5-Hydroxy-7-methoxy-2,8-dimethyl-4H-1-benzopyran-4-one

C12H12O4 (220.0735552)


   

Altechromone A

7-Hydroxy-2,5-dimethyl-4H-1-benzopyran-4-one

C11H10O3 (190.062991)


A natural product found particularly in Alternaria species and Alternaria brassicicola.

   

4-hydroxy-4-methyloxan-2-one

4-hydroxy-4-methyloxan-2-one

C6H10O3 (130.062991)


A member of the class of 2-pyranones that is tetrahydro-2H-pyran-2-one substituted by a methyl and hydroxy group at position 4.

   
   

Tyrosol

InChI=1\C8H10O2\c9-6-5-7-1-3-8(10)4-2-7\h1-4,9-10H,5-6H

C8H10O2 (138.06807600000002)


Tyrosol, also known as 4-hydroxyphenylethanol or 4-(2-hydroxyethyl)phenol, is a member of the class of compounds known as tyrosols. Tyrosols are organic aromatic compounds containing a phenethyl alcohol moiety that carries a hydroxyl group at the 4-position of the benzene group. Tyrosol is soluble (in water) and a very weakly acidic compound (based on its pKa). Tyrosol can be synthesized from 2-phenylethanol. Tyrosol is also a parent compound for other transformation products, including but not limited to, hydroxytyrosol, crosatoside B, and oleocanthal. Tyrosol is a mild, sweet, and floral tasting compound and can be found in a number of food items such as breadnut tree seed, sparkleberry, loquat, and savoy cabbage, which makes tyrosol a potential biomarker for the consumption of these food products. Tyrosol can be found primarily in feces and urine, as well as in human prostate tissue. Tyrosol exists in all eukaryotes, ranging from yeast to humans. Tyrosol present in wine is also shown to be cardioprotective. Samson et al. has shown that tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. In addition, tyrosol also induced the expression of longevity protein SIRT1 in the heart after myocardial infarction in a rat MI model. Hence tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart . D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].

   

DESGLYMIDODRINE

DESGLYMIDODRINE

C10H15NO3 (197.105188)


Desglymidodrine (ST 1059), the active metabolite of Midodrine (HY-12749), is a selective α1-adrenoceptor agonist. Desglymidodrine is an effective arterial and venous vasoconstrictor and can be used to regulate blood pressure[1][2].

   

methyl 2-(4-hydroxyphenyl)acetate

methyl 2-(4-hydroxyphenyl)acetate

C9H10O3 (166.062991)


A methyl ester resulting from the formal condensation of the carboxy group of 4-hydroxyphenylacetic acid with methanol. It has been isolated from Penicillium chrysogenum.

   

5-hydroxy-6,8,10-trimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

5-hydroxy-6,8,10-trimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

C17H18O6 (318.11033280000004)


   

(1s,3r,6r,7r,10r,11r)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadec-15-ene-14,17-dione

(1s,3r,6r,7r,10r,11r)-6-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadec-15-ene-14,17-dione

C28H40O3 (424.297729)


   

(1r,3r,4z,8e,11r)-4,7,7,11,17-pentamethyl-12-oxatricyclo[9.8.0.0¹³,¹⁸]nonadeca-4,8,13,15,17-pentaene-3,15-diol

(1r,3r,4z,8e,11r)-4,7,7,11,17-pentamethyl-12-oxatricyclo[9.8.0.0¹³,¹⁸]nonadeca-4,8,13,15,17-pentaene-3,15-diol

C23H32O3 (356.23513219999995)


   

5-hydroxy-6,8-dimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

5-hydroxy-6,8-dimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

C17H18O5 (302.1154178)


   

6,7,8-trihydroxy-3-methylisochromen-1-one

6,7,8-trihydroxy-3-methylisochromen-1-one

C10H8O5 (208.0371718)


   

(1r,9ar,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,9ar,9br,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H40O (392.307899)


   

(2s)-5-hydroxy-6,8,10-trimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

(2s)-5-hydroxy-6,8,10-trimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

C17H18O6 (318.11033280000004)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H40O (392.307899)


   

(1r,9ar,9br,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,9ar,9br,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H40O (392.307899)


   

(2s)-5-hydroxy-6,8-dimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

(2s)-5-hydroxy-6,8-dimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

C16H16O5 (288.0997686)


   

(3r)-5,8-dihydroxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

(3r)-5,8-dihydroxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

C10H10O4 (194.057906)


   

(1ar,2r,7s,7as)-1ah,2h,7h,7ah-naphtho[2,3-b]oxirene-2,3,7-triol

(1ar,2r,7s,7as)-1ah,2h,7h,7ah-naphtho[2,3-b]oxirene-2,3,7-triol

C10H10O4 (194.057906)


   

(1s,3r,6r,7r,10r,11r)-6-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadec-15-ene-14,17-dione

(1s,3r,6r,7r,10r,11r)-6-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadec-15-ene-14,17-dione

C28H40O3 (424.297729)


   

(2r)-7-hydroxy-2-methyl-2,3-dihydro-1-benzopyran-4-one

(2r)-7-hydroxy-2-methyl-2,3-dihydro-1-benzopyran-4-one

C10H10O3 (178.062991)


   
   

7-hydroxy-2-methyl-2,3-dihydro-1-benzopyran-4-one

7-hydroxy-2-methyl-2,3-dihydro-1-benzopyran-4-one

C10H10O3 (178.062991)


   

4,7,7,11,17-pentamethyl-12-oxatricyclo[9.8.0.0¹³,¹⁸]nonadeca-4,8,13,15,17-pentaene-3,15-diol

4,7,7,11,17-pentamethyl-12-oxatricyclo[9.8.0.0¹³,¹⁸]nonadeca-4,8,13,15,17-pentaene-3,15-diol

C23H32O3 (356.23513219999995)


   

(2s,3r)-5-hydroxy-6,8,10-trimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

(2s,3r)-5-hydroxy-6,8,10-trimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

C18H20O6 (332.125982)


   

7-hydroxy-8-methoxy-2,5-dimethylchromen-4-one

7-hydroxy-8-methoxy-2,5-dimethylchromen-4-one

C12H12O4 (220.0735552)


   

1ah,2h,7h,7ah-naphtho[2,3-b]oxirene-2,3,7-triol

1ah,2h,7h,7ah-naphtho[2,3-b]oxirene-2,3,7-triol

C10H10O4 (194.057906)


   

5-hydroxy-6,8,10-trimethoxy-2-methylbenzo[g]chromen-4-one

5-hydroxy-6,8,10-trimethoxy-2-methylbenzo[g]chromen-4-one

C17H16O6 (316.0946836)


   

3,8,24-trihydroxy-4,11,16,16,20,27-hexamethyl-5,21-dioxapentacyclo[18.9.0.0⁴,¹⁴.0⁶,¹².0²²,²⁸]nonacosa-6(12),7,10,17,22(28),23,26-heptaene-9,25-dione

3,8,24-trihydroxy-4,11,16,16,20,27-hexamethyl-5,21-dioxapentacyclo[18.9.0.0⁴,¹⁴.0⁶,¹².0²²,²⁸]nonacosa-6(12),7,10,17,22(28),23,26-heptaene-9,25-dione

C33H40O7 (548.2773890000001)


   
   

(4s)-4,8-dihydroxy-3,4-dihydro-2h-naphthalen-1-one

(4s)-4,8-dihydroxy-3,4-dihydro-2h-naphthalen-1-one

C10H10O3 (178.062991)


   

(2s,3s)-5-hydroxy-6,8,10-trimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

(2s,3s)-5-hydroxy-6,8,10-trimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

C18H20O6 (332.125982)


   

(1r,3r,4r,14r,17e,20r)-3,8,24-trihydroxy-4,11,16,16,20,27-hexamethyl-5,21-dioxapentacyclo[18.9.0.0⁴,¹⁴.0⁶,¹².0²²,²⁸]nonacosa-6(12),7,10,17,22(28),23,26-heptaene-9,25-dione

(1r,3r,4r,14r,17e,20r)-3,8,24-trihydroxy-4,11,16,16,20,27-hexamethyl-5,21-dioxapentacyclo[18.9.0.0⁴,¹⁴.0⁶,¹².0²²,²⁸]nonacosa-6(12),7,10,17,22(28),23,26-heptaene-9,25-dione

C33H40O7 (548.2773890000001)


   

5-hydroxy-6,8-dimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

5-hydroxy-6,8-dimethoxy-2-methyl-2h,3h-naphtho[2,3-b]pyran-4-one

C16H16O5 (288.0997686)


   

(3r,4s)-6-hydroxy-3,4,5-trimethyl-8-oxo-3,4-dihydro-2-benzopyran-7-carboxylic acid

(3r,4s)-6-hydroxy-3,4,5-trimethyl-8-oxo-3,4-dihydro-2-benzopyran-7-carboxylic acid

C13H14O5 (250.08411940000002)


   

(2s,3r)-5-hydroxy-6,8-dimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

(2s,3r)-5-hydroxy-6,8-dimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

C17H18O5 (302.1154178)


   

(2s,3s)-5-hydroxy-6,8-dimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

(2s,3s)-5-hydroxy-6,8-dimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

C17H18O5 (302.1154178)


   

5-hydroxy-6,8,10-trimethoxy-2,3-dimethylbenzo[g]chromen-4-one

5-hydroxy-6,8,10-trimethoxy-2,3-dimethylbenzo[g]chromen-4-one

C18H18O6 (330.11033280000004)


   

5-hydroxy-6,8-dimethoxy-2,3-dimethylbenzo[g]chromen-4-one

5-hydroxy-6,8-dimethoxy-2,3-dimethylbenzo[g]chromen-4-one

C17H16O5 (300.0997686)


   

6-(5,6-dimethylhept-3-en-2-yl)-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadec-15-ene-14,17-dione

6-(5,6-dimethylhept-3-en-2-yl)-7,11-dimethyl-2-oxapentacyclo[8.8.0.0¹,³.0³,⁷.0¹¹,¹⁶]octadec-15-ene-14,17-dione

C28H40O3 (424.297729)


   
   

(1r,9ar,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

(1r,9ar,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C28H40O (392.307899)


   

5-hydroxy-6,8,10-trimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

5-hydroxy-6,8,10-trimethoxy-2,3-dimethyl-2h,3h-naphtho[2,3-b]pyran-4-one

C18H20O6 (332.125982)


   

(1as,2s,7r,7ar)-1ah,2h,7h,7ah-naphtho[2,3-b]oxirene-2,3,7-triol

(1as,2s,7r,7ar)-1ah,2h,7h,7ah-naphtho[2,3-b]oxirene-2,3,7-triol

C10H10O4 (194.057906)