Exact Mass: 794.4089
Exact Mass Matches: 794.4089
Found 300 metabolites which its exact mass value is equals to given mass value 794.4089
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Spinasaponin A
Constituent of Spinacia oleracea (spinach). Spinasaponin A is found in green vegetables and spinach. Calenduloside G is a constituent of Calendula officinalis (pot marigold).
Betavulgaroside IV
Betavulgaroside IV is found in root vegetables. Betavulgaroside IV is a constituent of Beta vulgaris (sugar beet) Constituent of Beta vulgaris (sugar beet). Betavulgaroside IV is found in root vegetables.
Cynarasaponin C
Cynarasaponin C is found in green vegetables. Cynarasaponin C is a constituent of globe artichoke (Cynara cardunculus) root. Constituent of globe artichoke (Cynara cardunculus) root. Cynarasaponin C is found in herbs and spices and green vegetables.
Calendulaglycoside E
Calendulaglycoside E is isolated from Calendula officinalis (pot marigold). Isolated from Calendula officinalis (pot marigold).
Chikusetsu saponin iva
Metabolite A
Metildigoxin
PG(a-13:0/6 keto-PGF1alpha)
PG(a-13:0/6 keto-PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/6 keto-PGF1alpha), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(6 keto-PGF1alpha/a-13:0)
PG(6 keto-PGF1alpha/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(6 keto-PGF1alpha/a-13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(a-13:0/TXB2)
PG(a-13:0/TXB2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-13:0/TXB2), in particular, consists of one chain of one 10-methyldodecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(TXB2/a-13:0)
PG(TXB2/a-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(TXB2/a-13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 10-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-13:0/6 keto-PGF1alpha)
PG(i-13:0/6 keto-PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/6 keto-PGF1alpha), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(6 keto-PGF1alpha/i-13:0)
PG(6 keto-PGF1alpha/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(6 keto-PGF1alpha/i-13:0), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(i-13:0/TXB2)
PG(i-13:0/TXB2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-13:0/TXB2), in particular, consists of one chain of one 11-methyldodecanoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
PG(TXB2/i-13:0)
PG(TXB2/i-13:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(TXB2/i-13:0), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 11-methyldodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).
Tenacissoside H
Tenacissoside H is a natural product found in Marsdenia tenacissima with data available. Tenacissoside H is a Chinese medicine monomer extracted, isolated from Caulis Marsdeniae Tenacissimae. IC50 value: Target: In vitro: TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P < 0.05). [1] In vivo: TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P < 0.05). [1] Tenacissoside H is a Chinese medicine monomer extracted, isolated from Caulis Marsdeniae Tenacissimae. IC50 value: Target: In vitro: TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P < 0.05). [1] In vivo: TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P < 0.05). [1]
MOMORDIN IIB
Chikusetsusaponin-IVa is a triterpenoid saponin. It has a role as a metabolite. Chikusetsusaponin iva is a natural product found in Swartzia simplex, Anredera baselloides, and other organisms with data available. See also: Calendula Officinalis Flower (part of). Chikusetsusaponin IVa a major active ingredient of triterpenoid saponins, exerts antithrombotic effects, including minor hemorrhagic events. This appears to be important for the development of new therapeutic agents. a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders. IC50 Value: 199.4 ± 9.1 μM (inhibiting thrombin-induced fibrinogen clotting) Target: In vitro: Using biochemical and pharmacological methods, it proves that chikusetsusaponin IVa prolongs the recalcification time, prothrombin time, activated partial thromboplastin time, and thrombin time of normal human plasma in a dose-dependent manner; inhibits the amidolytic activity of thrombin and factor Xa upon synthetic substrates S2238 and S2222; inhibits thrombin-induced fibrinogen clotting (50\\% inhibition concentration, 199.4 ± 9.1 μM); inhibits thrombin- and collagen-induced platelet aggregation. Chikusetsusaponin IVa can also preferentially inhibits thrombin in a competitive manner (K(i)=219.6 μM) [1]. Chikusetsusaponin IVa suppresses the production of iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated THP-1 cells likely by inhibiting NF-κB activation and ERK, JNK, and p38 signal pathway phosphorylation [2]. In vivo: Studies were performed on type 2 diabetic mellitus (T2DM) rats given CHS for 28 days to test the antihyperglycemic activity. Oral administration of CHS dose-dependently increased the level of serum insulin and decreased the rise in blood glucose level [3]. Chikusetsusaponin IVa a major active ingredient of triterpenoid saponins, exerts antithrombotic effects, including minor hemorrhagic events. This appears to be important for the development of new therapeutic agents. a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders. IC50 Value: 199.4 ± 9.1 μM (inhibiting thrombin-induced fibrinogen clotting) Target: In vitro: Using biochemical and pharmacological methods, it proves that chikusetsusaponin IVa prolongs the recalcification time, prothrombin time, activated partial thromboplastin time, and thrombin time of normal human plasma in a dose-dependent manner; inhibits the amidolytic activity of thrombin and factor Xa upon synthetic substrates S2238 and S2222; inhibits thrombin-induced fibrinogen clotting (50\% inhibition concentration, 199.4 ± 9.1 μM); inhibits thrombin- and collagen-induced platelet aggregation. Chikusetsusaponin IVa can also preferentially inhibits thrombin in a competitive manner (K(i)=219.6 μM) [1]. Chikusetsusaponin IVa suppresses the production of iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated THP-1 cells likely by inhibiting NF-κB activation and ERK, JNK, and p38 signal pathway phosphorylation [2]. In vivo: Studies were performed on type 2 diabetic mellitus (T2DM) rats given CHS for 28 days to test the antihyperglycemic activity. Oral administration of CHS dose-dependently increased the level of serum insulin and decreased the rise in blood glucose level [3].
Chikusetsu
Chikusetsusaponin-IVa is a triterpenoid saponin. It has a role as a metabolite. Chikusetsusaponin iva is a natural product found in Swartzia simplex, Anredera baselloides, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A natural product found in Panax japonicus var. major. Chikusetsusaponin IVa a major active ingredient of triterpenoid saponins, exerts antithrombotic effects, including minor hemorrhagic events. This appears to be important for the development of new therapeutic agents. a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders. IC50 Value: 199.4 ± 9.1 μM (inhibiting thrombin-induced fibrinogen clotting) Target: In vitro: Using biochemical and pharmacological methods, it proves that chikusetsusaponin IVa prolongs the recalcification time, prothrombin time, activated partial thromboplastin time, and thrombin time of normal human plasma in a dose-dependent manner; inhibits the amidolytic activity of thrombin and factor Xa upon synthetic substrates S2238 and S2222; inhibits thrombin-induced fibrinogen clotting (50\\% inhibition concentration, 199.4 ± 9.1 μM); inhibits thrombin- and collagen-induced platelet aggregation. Chikusetsusaponin IVa can also preferentially inhibits thrombin in a competitive manner (K(i)=219.6 μM) [1]. Chikusetsusaponin IVa suppresses the production of iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated THP-1 cells likely by inhibiting NF-κB activation and ERK, JNK, and p38 signal pathway phosphorylation [2]. In vivo: Studies were performed on type 2 diabetic mellitus (T2DM) rats given CHS for 28 days to test the antihyperglycemic activity. Oral administration of CHS dose-dependently increased the level of serum insulin and decreased the rise in blood glucose level [3]. Chikusetsusaponin IVa a major active ingredient of triterpenoid saponins, exerts antithrombotic effects, including minor hemorrhagic events. This appears to be important for the development of new therapeutic agents. a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders. IC50 Value: 199.4 ± 9.1 μM (inhibiting thrombin-induced fibrinogen clotting) Target: In vitro: Using biochemical and pharmacological methods, it proves that chikusetsusaponin IVa prolongs the recalcification time, prothrombin time, activated partial thromboplastin time, and thrombin time of normal human plasma in a dose-dependent manner; inhibits the amidolytic activity of thrombin and factor Xa upon synthetic substrates S2238 and S2222; inhibits thrombin-induced fibrinogen clotting (50\% inhibition concentration, 199.4 ± 9.1 μM); inhibits thrombin- and collagen-induced platelet aggregation. Chikusetsusaponin IVa can also preferentially inhibits thrombin in a competitive manner (K(i)=219.6 μM) [1]. Chikusetsusaponin IVa suppresses the production of iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated THP-1 cells likely by inhibiting NF-κB activation and ERK, JNK, and p38 signal pathway phosphorylation [2]. In vivo: Studies were performed on type 2 diabetic mellitus (T2DM) rats given CHS for 28 days to test the antihyperglycemic activity. Oral administration of CHS dose-dependently increased the level of serum insulin and decreased the rise in blood glucose level [3].
Tenacissoside
Tenacissoside H is a natural product found in Marsdenia tenacissima with data available. Tenacissoside H is a Chinese medicine monomer extracted, isolated from Caulis Marsdeniae Tenacissimae. IC50 value: Target: In vitro: TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P < 0.05). [1] In vivo: TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P < 0.05). [1] Tenacissoside H is a Chinese medicine monomer extracted, isolated from Caulis Marsdeniae Tenacissimae. IC50 value: Target: In vitro: TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P < 0.05). [1] In vivo: TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P < 0.05). [1]
3-O-alpha-L-arabinopyranosylserjanic acid 28-O-beta-D-glucopyranosyl ester
(1R,3aR,4aS,6aS,8S,10aS,10bS,11S,12S,12aS)-12-acetoxy-1-acetyl-8-(((2R,4R,5R,6R)-5-(((2S,3R,4R,5R,6R)-3,5-dihydroxy-4-methoxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4-methoxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-10a,12a-dimethyltetradecahydro-1H-cyclopenta[1,2]phenanthro[1,10a-b]oxiren-11-yl 2-methylbutanoate
rediocide A
A natural product found in Trigonostemon thyrsoideum. A diterpenoid of the class of daphnane-type terpenes. It is isolated from Trigonostemon reidioides and has been shown to exhibit insecticidal activity.
cynaforroside Q|glaucogenin C 3-O-beta-D-oleandropyranosyl-(1->4)-beta-D-3-demethyl-2-deoxythevetopyranosyl-(1->4)-beta-D-thevetopyranoside
16-hydroxy-3beta-O-[alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucopyranosyloxyuronic acid]-5alpha,14beta-poriferast-16-ene-15,23-dione methyl ester|pandaroside I methyl ester
cynanogenin A 3-O-beta-D-cymaropyranosyl-(1->4)-alpha-L-diginopyranosyl-(1->4)-beta-D-cymaropyranoside|cynanoside A
2alpha,19alpha-dihydroxy-3-oxo-olean-12-en-28-oic acid-28-O-alpha-L-rhamnopyranosyl-(1 -> 4)-beta-D-glucopyranoside
3-O-[??-D-Glucopyranosyl-(1鈥樏傗垎3)-O-??-D-glucuronopyranosyl]-15-??-hydroxyolean-12-en-16-one
3-O-beta-D-glucopyranosyl-(1->2)-beta-D-quinovopyranosyl quinovic acid
(2aR,4aR,6aR,10S,12aR,12bS,14bS)-2a,4,4a,6a,7,9,10,11,12,12a,12b,13,14,14b-tetradecahydro-14b-hydroxy-2a,12a-dimethyl-6-oxo-6H-2,3,5-trioxapentaleno[1,6:5,6,7]cyclonona[1,2-a]naphthalen-10-yl 2,6-dideoxy-3-O-methyl-alpha-D-arabino-hexopyranosyl-(1->4)-2,6-dideoxy-alpha-D-ribo-hexopyranosyl-(1->4)-2,6-dideoxy-3-O-methyl-alpha-D-arabino-hexopyranoside|(3beta,8beta,9alpha,16alpha,17alpha)-14,16beta:15,20alpha:18,20beta-triepoxy-16beta,17alpha-dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13(18)-dien-3-yl alpha-oleandropyranosyl-(1->4)-alpha-digitoxopyranosyl-(1->4)-alpha-oleandropyranoside
quinovic acid 3beta-O-beta-6-deoxy-D-glucopyranosyl-28-beta-D-glucopyranosyl ester|zygophyloside B
3-O-[alpha-L-rhamnopyranosyl-(1->4)-beta-D-glucuronopyranosyl]echinocystic acid|echinocystic acid 3-O-alpha-L-rhamnopyranosyl(1->4)-O-beta-D-glucuronopyranoside
3beta-hydroxyurs-12-en-28-oic acid 3-O-[beta-D-galactopyranosyl-(1->2)]-beta-D-glucuranopyranoside
10-[3,4-Dihydroxy-6-methyl-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid
4-[(2R)-2-((S)-1-hydroxy-ethyl)-pyrrolidin-1-yl]-4-deoxy-rifamycin|Halomicin B|halomicin-B
(3S,5R,6S,10R,12beta,16beta,24E)-26-(beta-D-glucopyranosyloxy)-10,16-dihydroxy-4,4,14-trimethyl-9,19-cyclo-9,10-secocholesta-9(11),24-diene-3,6,12-triyl triacetate|huangqiyenin E
stellatogenin 3-O-alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucuronopyranoside|stellatoside E
3-O-[beta-D-glucopyranosyl]quinovic acid-28-O-[beta-L-rhamnopyranosyl]ester|elasticoside
3beta-O-(beta-D-glucuronopyranosyloxy)lup-20(29)-en-28-oic acid 28-O-beta-D-glucopyranosyl ester|ryobusaponin E
19alpha-hydroxyurs-12-en-28-oic acid 3beta-O-alpha-L-arabinopyranosyl-(1?2)-beta-D-glucuronopyranoside-6-Omethyl ester
5beta,19beta-epoxy-29-nor-3,11-dioxo-cucurbit-24-ene-27-oic acid 27-O-beta-D-glucopyranosyl-(1->6)-7beta-D-glucopyranoside
28-methyl serratagenate-3-beta-O-beta-xylopyranosyl(1->2)-beta-glucopyranoside
pomolic acid 3beta-O-alpha-L-2-acetoxyarabinopyranosyl-28-O-beta-D-glucopyranoside
quillaic acid 3-O-beta-D-xylopyranosyl-(1->3)-beta-D-glucuronopyranoside
25-O-acetylcimigenol 3-O-beta-D-xylopyranosyl-(1->3)-beta-D-xylopyranoside|cimifoside B
Zingibroside R1
Zingibroside R1 is a natural product found in Meryta lanceolata, Panax japonicus, and Polyscias fruticosa with data available. Zingibroside R1 is dammaranae-type triterpenoid saponin, isolated from rhizomes, taproots, and lateral roots of Panax japonicas C. A. Meyer, shows excellent anti-tumor effects as well as anti-angiogenic activity[1]. Zingibroside R1 possesses some anti-HIV-1 activity. Zingibroside R1 has inhibitory effects on the 2-deoxy-D-glucose (2-DG) uptake by EAT cells (IC50=91.3 μM)[2]. Zingibroside R1 is dammaranae-type triterpenoid saponin, isolated from rhizomes, taproots, and lateral roots of Panax japonicas C. A. Meyer, shows excellent anti-tumor effects as well as anti-angiogenic activity[1]. Zingibroside R1 possesses some anti-HIV-1 activity. Zingibroside R1 has inhibitory effects on the 2-deoxy-D-glucose (2-DG) uptake by EAT cells (IC50=91.3 μM)[2].
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(1,3,4,5,6-pentahydroxyhexan-2-yloxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate
C42H66O14_Hexopyranose, 1-O-[3-[(6-deoxyhexopyranosyl)oxy]-27-hydroxy-27,28-dioxoolean-12-en-28-yl]
C42H66O14_1-O-[(3beta,5xi,9xi)-3-(beta-D-Galactopyranuronosyloxy)-28-oxoolean-12-en-28-yl]-beta-D-glucopyranose
C42H66O14_Olean-12-en-28-oic acid, 3-[(3-O-beta-D-glucopyranosyl-beta-D-glucopyranuronosyl)oxy]-, (3beta)
C42H66O14_1-O-[(3beta,5xi,9xi,18xi)-3-(beta-D-Glucopyranuronosyloxy)-28-oxoolean-12-en-28-yl]-beta-D-glucopyranose
C42H66O14_Urs-12-ene-27,28-dioic acid, 3-[(6-deoxy-3-O-hexopyranosylhexopyranosyl)oxy]-, (3beta,5xi,9xi,18xi,19xi,20xi)
C42H66O14_Hexopyranose, 1-O-[3-[(6-deoxyhexopyranosyl)oxy]-27-hydroxy-27,28-dioxours-12-en-28-yl]
C42H66O14_Urs-12-ene-27,28-dioic acid, 3-[(6-deoxy-4-O-beta-D-glucopyranosyl-alpha-L-mannopyranosyl)oxy]-, (3beta,5xi,9xi,18xi)
1,2,6b,9,9,12a-hexamethyl-4a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-10-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-6a-carboxylic acid
2,2,6b,9,9,12a-hexamethyl-4a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-10-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-6a-carboxylic acid
(2S,3S,4S,5R,6R)-6-[[(3S,6aR,6bS,8aS,14bR)-4,4,6a,6b,11,11,14b-heptamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
(1S,2R,4aS,6aR,6bR,10S,12aR)-10-[(2R,3R,4S,5R,6S)-3,4-dihydroxy-6-methyl-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a,6a-dicarboxylic acid
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(1,3,4,5,6-pentahydroxyhexan-2-yloxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846644]
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846567]
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based: Match]
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846563]
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(1,3,4,5,6-pentahydroxyhexan-2-yloxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based: Match]
[3-methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846570]
1,2,6b,9,9,12a-hexamethyl-4a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-10-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-6a-carboxylic acid_major
1,2,6b,9,9,12a-hexamethyl-4a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-10-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-6a-carboxylic acid_minor
1,2,6b,9,9,12a-hexamethyl-4a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-10-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-6a-carboxylic acid_68.5\\%
Betavulgaroside IV
Ladyginoside a
Cynarasaponin C
Cimimanol C
Cincholic acid 3beta-O-beta-D-fucopyranosyl-28-O-beta-D-glucopyranosyl ester
Cincholic acid 3beta-O-beta-D-glucopyranosyl-(1-4)-beta-D-fucopyranoside
Quinovic acid 3-O-(6-deoxyglucoside) 28-O-glucosyl ester
Metildigoxin
C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AA - Digitalis glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C823 - Saponin C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C1907 - Drug, Natural Product D004791 - Enzyme Inhibitors
[(1R,2S,3S,5R,6S,7S,8R,10S,11S,14E,16Z,18R,19S,22R,24R,25S,26R,28S,30S,31R,33S)-6,7,24,25-tetrahydroxy-5-(hydroxymethyl)-10,24,31,33-tetramethyl-13-oxo-28-phenyl-4,12,27,29,32-pentaoxaoctacyclo[26.3.1.119,22.01,8.02,26.03,5.07,11.025,30]tritriaconta-14,16-dien-18-yl] 3-methylbutanoate
[3-Methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate
[3-Methyl-1-[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(1,3,4,5,6-pentahydroxyhexan-2-yloxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[(2S,3S,6S)-6-[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[(2S,3S,6S)-6-[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-[(1s,2s)-2-carboxy-1-(carboxymethoxy)-2-hydroxyethoxy]-3,5-dihydroxyoxane-2-carboxylic acid
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(1r,4s,5r,8r,10s,13s,14r,15s,19s,20s)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-15,19-dihydroxy-4,5,9,9,13,19,20-heptamethyl-21-oxahexacyclo[18.2.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-17-en-22-one
(2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,6a,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylic acid
4a-methyl 2-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 2,6a,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-2,4a-dicarboxylate
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(4s,5r,7r,8r,13r,16s,19r,22r)-7-hydroxy-8-{[(2s,4r,5r,6r)-5-{[(2s,4r,5s,6r)-4-hydroxy-5-{[(2s,4r,5r,6r)-5-hydroxy-4-methoxy-6-methyloxan-2-yl]oxy}-6-methyloxan-2-yl]oxy}-4-methoxy-6-methyloxan-2-yl]oxy}-5,19-dimethyl-15,18,20-trioxapentacyclo[14.5.1.0⁴,¹³.0⁵,¹⁰.0¹⁹,²²]docosa-1(21),10-dien-14-one
(2s,3s,4r,5r,6r)-6-{[(3r,4as,6as,6br,8s,8ar,12as,14as,14bs)-8a-carboxy-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid
methyl 6-{[1-(5-ethyl-6-methyl-4-oxoheptan-2-yl)-2-hydroxy-9a,11a-dimethyl-3-oxo-3ah,3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylate
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5s,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
2,2,6b,9,9,12a-hexamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-6a-carboxylic acid
2-hydroxy-4,5,9,9,13,20,20-heptamethyl-10-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-22-oxahexacyclo[19.2.1.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-16-en-23-one
(1r,2s,7s)-7-{4-[(1r,2s)-7-chloro-2-methyl-1-{[(2s,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}undecyl]-2,6-dihydroxyphenyl}-1-(3,5-dihydroxyphenyl)-2-methylundecyl acetate
6-[(8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(1s,3r,4s,5s,6r,7r,9s,11r,12s,13s,15r,16s,17s,18r,20s,21s,24e,26z,28s,29r)-3,4,16,17-tetrahydroxy-15-(hydroxymethyl)-3,6,20-trimethyl-23-oxo-9-phenyl-8,10,14,22,34-pentaoxaoctacyclo[27.2.2.1⁵,⁹.0⁴,¹¹.0⁷,¹².0⁷,¹⁸.0¹³,¹⁵.0¹⁷,²¹]tetratriaconta-24,26-dien-28-yl 3-methylbutanoate
(14e)-6,7,24,25-tetrahydroxy-5-(hydroxymethyl)-10,24,31,33-tetramethyl-13-oxo-28-phenyl-4,12,27,29,32-pentaoxaoctacyclo[26.3.1.1¹⁹,²².0¹,⁸.0²,²⁶.0³,⁵.0⁷,¹¹.0²⁵,³⁰]tritriaconta-14,16-dien-18-yl 3-methylbutanoate
3-o-[α-l-rhamnopyranosyl-(1→4)-β-d-glu-curonopyranosyl]echinocysticacid
{"Ingredient_id": "HBIN009116","Ingredient_name": "3-o-[\u03b1-l-rhamnopyranosyl-(1\u21924)-\u03b2-d-glu-curonopyranosyl]echinocysticacid","Alias": "NA","Ingredient_formula": "C42H66O14","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "18706","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-o-[β-d-glucopyranosyl-(1→3)-o-β-d-glu-curonopyranosyl]-15-α-hydroxyolean-12-en-16-one
{"Ingredient_id": "HBIN009193","Ingredient_name": "3-o-[\u03b2-d-glucopyranosyl-(1\u21923)-o-\u03b2-d-glu-curonopyranosyl]-15-\u03b1-hydroxyolean-12-en-16-one","Alias": "NA","Ingredient_formula": "C42H66O14","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "8662","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
achyranthoside ii
{"Ingredient_id": "HBIN014544","Ingredient_name": "achyranthoside ii","Alias": "NA","Ingredient_formula": "C41H62O15","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14168","TCMID_id": "544","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}