Gene Association: RUNX3
UniProt Search:
RUNX3 (PROTEIN_CODING)
Function Description: RUNX family transcription factor 3
found 10 associated metabolites with current gene based on the text mining result from the pubmed database.
Enoxacin
Enoxacin is only found in individuals that have used or taken this drug. It is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid. [PubChem]Enoxacin exerts its bactericidal action via the inhibition of the essential bacterial enzyme DNA gyrase (DNA Topoisomerase II). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3078
3,5-Cyclic IMP
A 3,5-cyclic purine nucleotide having hypoxanthine as the nucleobase.
Casuarinin
Casuarinin is found in feijoa. Casuarinin is isolated from Corylus heterophylla (Siberian filbert
Solamargine
Solamargine is an azaspiro compound, a steroid and an oxaspiro compound. Solamargine has been used in trials studying the treatment of Actinic Keratosis. Solamargine is a natural product found in Solanum pittosporifolium, Solanum americanum, and other organisms with data available. Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2]. Solamargine, a derivative from the steroidal solasodine in Solanum species, exhibits anticancer activities in numerous types of cancer. Solamargine induces non-selective cytotoxicity and P-glycoprotein inhibition. Solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity[1][2].
Tazarotene
Tazarotene is only found in individuals that have used or taken this drug. It is a prescription topical retinoid sold as a cream or gel. This medication is approved for treatment of psoriasis, acne, and sun damaged skin (photodamage). [Wikipedia]Although the exact mechanism of tazarotene action is not known, studies have shown that the active form of the drug (tazarotenic acid) binds to all three members of the retinoic acid receptor (RAR) family: RARa, RARb, and RARg, but shows relative selectivity for RARb, and RARg and may modify gene expression. It also has affinity for RXR receptors. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (also known as NNK) is a potent tobacco-specific nitrosamine derived from nicotine. It plays a key role in human tobacco-related cancers (PMID:24830349). NNK is found in cured tobacco and is also produced during its burning or combustion in cigarettes. NNK is abundantly present in cigarette smoke (20-280 ng/cigarette). Electronic cigarettes (e-cigarettes) do not convert nicotine to NNK due to their lower operating temperatures. NNK is a procarcinogen. This means it must be activated by cytochrome P450 enzymes (CYP2A6 and CYP2B6) to become a carcinogen (PMID:24830349). NNK can also be activated by myeloperoxidase (MPO) and epoxide hydrolase (EPHX1). All activation processes lead to the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol from NNK, which is called NNAL (PMID:24830349). NNAL can be detoxified via glucuronidation via glucuronidases. Once NNK is activated to NNAL, this compound initiates a cascade of signalling pathways (for example ERK1/2, NFκB, PI3K/Akt, MAPK, FasL, K-ras), resulting in uncontrolled cellular proliferation and tumorigenesis. NNK is known as a mutagen and can cause point mutations that affect cell growth proliferation and differentiation. NNK also targets the SULT1A1, TGF-beta, and angiotensin II genes. NNK plays a key role in gene silencing, gene modification, and carcinogenesis. NNK has been implicated in tumour promotion by activating nicotinic acetylcholine receptors (nAChRs) and β-adrenergic receptors (β-AdrRs), leading to downstream activation of parallel signal transduction pathways that facilitate tumour progression (PMID:24830349). Antioxidants such as EGCG (from green tea) inhibit lung tumorigenesis by NNK. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent tobacco-specific nitrosamine in animals. It has been suggested to play a role in human tobacco-related cancers. P450 1A2 catalyzed the formation of keto alcohol and 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde) from NNK, with the keto alcohol being the major metabolite. Phenethyl isothiocyanate (PEITC0 is an effective inhibitor of the carcinogenicity or toxicity of chemicals that are activated by P450 1A2.( PMID: 8625495) [HMDB] D009676 - Noxae > D002273 - Carcinogens
Pheophorbide a
D011838 - Radiation-Sensitizing Agents Pheophorbide A is an intermediate product in the chlorophyll degradation pathway and can be used as a photosensitizer. Pheophorbide A acts as a lymphovascular activator with antitumor activity[1]. Pheophorbide a. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=15664-29-6 (retrieved 2024-08-21) (CAS RN: 15664-29-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Tazarotene
C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132
enoxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic