Gene Association: GSK3A

UniProt Search: GSK3A (PROTEIN_CODING)
Function Description: glycogen synthase kinase 3 alpha

found 18 associated metabolites with current gene based on the text mining result from the pubmed database.

Pergolide

(2R,4R,7R)-4-[(methylsulfanyl)methyl]-6-propyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene

C19H26N2S (314.1817)


Pergolide is a long-acting dopamine agonist approved in 1982 for the treatment of Parkinsons Disease. It is an ergot derivative that acts on the dopamine D2 and D3, alpha2- and alpha1-adrenergic, and 5-hydroxytryptamine (5-HT) receptors. It was indicated as adjunct therapy with levodopa/carbidopa in the symptomatic treatment of parkinsonian syndrome. It was later found that pergolide increased the risk of cardiac valvulopathy. The drug was withdrawn from the US market in March 2007 and from the Canadian market in August 2007. N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist

   

Paeonol

1-(2-hydroxy-4-methoxyphenyl)ethan-1-one

C9H10O3 (166.063)


A polyphenol metabolite detected in biological fluids [PhenolExplorer] Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

beta-tocotrienol

(2R)-2,5,8-Trimethyl-2-[(3E,7E)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-3,4-dihydro-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


   

Glycogen

(2R,3R,4S,5S,6R)-2-{[(2R,3S,4R,5R,6R)-4,5-dihydroxy-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}-2-({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C24H42O21 (666.2218)


Glycogen is a highly-branched polymer of about 30,000 glucose residues. The simplest structure of glycogen is made up of four units of glucose with an approximate molecular weight of 666 daltons. However, large molecules of glycogen can reach molecular weights in the order of 5 million Da. Most of the glucose units are linked together by alpha-1,4 glycosidic bonds, and approximately 1 in 12 glucose residues also form a 1,6 glycosidic bond with a second glucose, resulting in the creation of a branch. Glycogen only has one reducing end and a large number of non-reducing ends with a free hydroxyl group at carbon 4. The glycogen granules contain both glycogen and the enzymes of glycogen synthesis (glycogenesis) and degradation (glycogenolysis). The enzymes are nested between the outer branches of the glycogen molecules and act on the non-reducing ends. Therefore, the many non-reducing end-branches of glycogen facilitate its rapid synthesis and breakdown. In hypoglycemia caused by excessive insulin, liver glycogen levels are high, but the high insulin level prevents the necessary glycogenolysis to take place to maintain normal blood sugar levels. Glucagon is a common treatment for this type of hypoglycemia. Glycogen is a polysaccharide that is the principal storage form of glucose (Glc) in animal cells. Glycogen is found in the form of granules in the cytosol in many cell types. Hepatocytes (liver cells) have the highest concentration of it - up to 8\\% of the fresh weight in well fed state, or 100 to 120 g in an adult - giving liver a distinctive, starchy taste. In the muscles, glycogen is found in a much lower concentration (1\\% of the muscle mass), but the total amount exceeds that in liver. Small amounts of glycogen are found in the kidneys, and even smaller amounts in certain glial cells in the brain and white blood cells. Glycogen is a highly-branched polymer of about 30,000 glucose residues and has a molecular weight between 106 and 107 daltons (4.8 million approx.). Most of Glc units are linked by alpha-1,4 glycosidic bonds, approximately 1 in 12 Glc residues also makes -1,6 glycosidic bond with a second Glc which results in the creation of a branch. Glycogen only has one reducing end and a large number of non-reducing ends with a free hydroxyl group at carbon 4. The glycogen granules contain both glycogen and the enzymes of glycogen synthesis (glycogenesis) and degradation (glycogenolysis). The enzymes are nested between the outer branches of the glycogen molecules and act on the non-reducing ends. Therefore, the many non-reducing end-branches of glycogen facilitate its rapid synthesis and breakdown.

   

1,4-Dithiane

Tetrahydro-1,4-dithiin

C4H8S2 (120.0067)


1,4-Dithiane, also known as p-dithiane or fema 3831, belongs to the class of organic compounds known as dithianes. Dithianes are compounds containing a dithiane moiety, which is composed of a cyclohexane core structure wherein two methylene units are replaced by sulfur centres. A dithiane that is cyclohexane in which the -CH2- units at positions 1 and 2 have been replaced by sulfur atoms. 1,4-Dithiane is possibly neutral. 1,4-Dithiane is a fishy, garlic, and onion tasting compound. 1,4-Dithiane has been detected, but not quantified, in garden tomato. This could make 1,4-dithiane a potential biomarker for the consumption of these foods. Food additive listed in the EAFUS food additive database (Jan. 2001). Flavouring used in seasonings. 1,4-Dithiane is found in garden tomato.

   

Dipropyl disulfide

1-(propyldisulfanyl)propane

C6H14S2 (150.0537)


Dipropyl disulfide, also known as 1,1-dithiodipropane or 4,5-dithiaoctane, belongs to the class of organic compounds known as dialkyldisulfides. These are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Dipropyl disulfide is possibly neutral. Dipropyl disulfide is a burnt, earthy, and green tasting compound. Dipropyl disulfide has been detected, but not quantified, in several different foods, such as chives, cabbages, garden onions, nuts, and brassicas. Constituent of garlic, onion and other Allium subspecies Also present in raw cabbage, roast beef and roasted peanuts. Flavouring agent. Dipropyl disulfide is found in many foods, some of which are garden onion, onion-family vegetables, brassicas, and allium (onion).

   

Lithium

Lithium, ion (li1+)

Li+ (7.016)


Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). Lithium is found in many foods, some of which are endive, yellow zucchini, romaine lettuce, and common bean. Lithium (Li) is an alkali metal. First described as a mood stabilizer in 1949, it remains an efficacious treatment for bipolar disorders. Recent emerging evidence of its neuroprotective and neurogenic effects alludes to lithiums potential therapeutic use in stroke and neurodegenerative diseases. One intriguing clinical application is in the treatment of Alzheimers disease. Ongoing clinical trials are evaluating lithiums abilities to lower tau and beta-amyloid levels in cerebrospinal fluid in Alzheimers patients. Lithium reduces brain inositol levels by inhibiting the enzyme inositol monophosphatase. This suggests that inositol monophosphatase inhibition is a key mechanism of Lis therapeutic action and that design of new inositol monophosphatase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. Lithium reduces the severity of some behavioral complications of Alzheimers disease (AD). And there are growing indications that Li may be of benefit to the underlying pathology of AD, as well as an array of other common CNS disorders, including stroke, Parkinsons disease, and Huntingtons disease. Physiologically, it exists as an ion in the body. Despite these demonstrated and prospective therapeutic benefits, Lis mechanism of action remains elusive, and opinions differ regarding the most relevant molecular targets. Lithium inhibits several enzymes; significant among these are inositol monophosphatase (IMPase), glycogen synthase kinase-3 (GSK-3), and the proteasome. Lithium has a narrow therapeutic range, and several well characterised adverse effects limit the potential usefulness of higher doses. Acute ingestion in Li-naive patients is generally associated with only short-lived exposure to high concentrations, due to extensive distribution of Li throughout the total body water compartment. Conversely, chronic toxicity and acute-on-therapeutic ingestion are associated with prolonged exposure to higher tissue concentrations and, therefore, greater toxicity. Lithium toxicity may be life threatening, or result in persistent cognitive and neurological impairment. Therefore, enhanced Li clearance has been explored as a means of minimizing exposure to high tissue concentrations. Although haemodialysis is highly effective in removing circulating Li, serum concentrations often rebound so repeated or prolonged treatment may be required. Continuous arteriovenous haemodiafiltration and continuous venovenous haemodiafiltration increase Li clearance, albeit to a lesser extent than haemodialysis, and are more widely accessible. Lithium reduces brain inositol levels by inhibiting IMPase, suggesting that IMPases inhibition is a key mechanism of Lis therapeutic action and that design of new IMPase inhibitors may be a practical strategy to create new compounds with Li-like therapeutic effects. (PMID: 17688381, 17316163, 8110911, 17288494). N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium Same as: D08133

   

Bufadienolide

Bufadienolide

C24H34O2 (354.2559)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

Paeonol

2 inverted exclamation mark -Hydroxy-4 inverted exclamation mark -methoxyacetophenone

C9H10O3 (166.063)


Paeonol is a member of phenols and a member of methoxybenzenes. It has a role as a metabolite. Paeonol is a natural product found in Vincetoxicum paniculatum, Vincetoxicum glaucescens, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia X suffruticosa root (part of). A natural product found in Paeonia rockii subspeciesrockii. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

epsilon-Tocopherol

(2R)-3,4-dihydro-2,5,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


Isolated from wheat bran oil. epsilon-Tocopherol is found in many foods, some of which are rye, coconut, rosemary, and fennel. epsilon-Tocopherol is found in american cranberry. epsilon-Tocopherol is isolated from wheat bran oi

   

Bufadienolide

5-{2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}-2H-pyran-2-one

C24H34O2 (354.2559)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

Pergolide

Pergolide

C19H26N2S (314.1817)


N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.736 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.732 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731

   

Lithium

Lithium

Li (7.016)


Same as: D08133 N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AN - Lithium

   

peonol

InChI=1\C9H10O3\c1-6(10)8-4-3-7(12-2)5-9(8)11\h3-5,11H,1-2H

C9H10O3 (166.063)


Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively. Paeonol is an active extraction from the root of Paeonia suffruticosa, Paeonol inhibits MAO-A and MAO-B with IC50 of 54.6 μM and 42.5 μM, respectively.

   

SSP-SSP

InChI=1\C6H14S2\c1-3-5-7-8-6-4-2\h3-6H2,1-2H

C6H14S2 (150.0537)


   

1,4-DITHIANE

1,4-DITHIANE

C4H8S2 (120.0067)


   

Propyl disulfide

Dipropyl disulfide

C6H14S2 (150.0537)


An organic disulfide where the alkyl groups specified are propyl. It is a component of the essential oils obtained from Allium.

   

e-Tokoferol

(2R)-3,4-dihydro-2,5,8-trimethyl-2-[(3E,7E)-4,8,12-trimethyl-3,7,11-tridecatrienyl]-2H-1-benzopyran-6-ol

C28H42O2 (410.3185)


A tocotrienol that is chroman-6-ol substituted by methyl groups at positions 2, 5 and 8 and a farnesyl chain at position 2. It has been isolated from various cultivars of wheat.