Gene Association: CFD

UniProt Search: CFD (PROTEIN_CODING)
Function Description: complement factor D

found 17 associated metabolites with current gene based on the text mining result from the pubmed database.

Accent

N-(Oleoyl, cocoyl)glutamic acid monosodium salt

C5H8NNaO4 (169.0351)


One of the FLAVORING AGENTS used to impart a meat-like flavor. See also: Monosodium Glutamate (preferred); Glutamic Acid (has active moiety) ... View More ... D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Yucron

SULFONIUM, ((3S)-3-AMINO-3-CARBOXYPROPYL)DIMETHYL-, CHLORIDE (1:1)

C6H14ClNO2S (199.0434)


Methylmethionine sulfonium salt is an organic molecular entity. Methylmethionine chloride may be useful in helping the healing of gastric ulcers. In Japan, it is used as an over the counter product for gastrointestinal health support. It is also called "Vitamin U", but it is not a true vitamin. A vitamin found in green vegetables. It is used in the treatment of peptic ulcers, colitis, and gastritis and has an effect on secretory, acid-forming, and enzymatic functions of the intestinal tract. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D018977 - Micronutrients > D014815 - Vitamins Vitamin U (S-Methylmethionine sulfonium) chloride is an orally active anti-ulcer agent with antioxidant activity. Vitamin U inhibits adipocyte differentiation. Vitamin U promotes skin wound healing.Vitamin U can be used in the research of gastrointestinal ulceration[1][2][3][4][5].

   

Ephedrine

(1R,2S)-1-Phenyl-1-hydroxy-2-methylaminopropane

C10H15NO (165.1154)


Ephedrine is only found in individuals who have consumed this drug. Ephedrine is an alpha- and beta-adrenergic agonist that may also enhance release of norepinephrine. It has been used in the treatment of several disorders including asthma, heart failure, rhinitis, and urinary incontinence, and for its central nervous system stimulatory effects in the treatment of narcolepsy and depression. It has become less extensively used with the advent of more selective agonists. [PubChem] Ephedrine is similar in molecular structure to the well-known drugs phenylpropanolamine and methamphetamine, as well as to the important neurotransmitter epinephrine (adrenalin). Chemically, it is an alkaloid with a phenethylamine skeleton found in various plants in the genus Ephedra (family Ephedraceae). It works mainly by increasing the activity of norepinephrine (noradrenalin) on adrenergic receptors. It is most usually marketed as the hydrochloride or sulfate salt. R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CA - Alpha- and beta-adrenoreceptor agonists R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2758

   

p-Cresol

4-methylphenol

C7H8O (108.0575)


para-Cresol, also 4-methylphenol, is an organic compound with the formula CH3C6H4(OH). P-cresol is a cresol that consists of toluene substituted by a hydroxy group at position 4. It is a metabolite of aromatic amino acid metabolism produced by intestinal microflora in humans and animals. It has a role as a uremic toxin, a human metabolite and an Escherichia coli metabolite. It is a colourless solid that is widely used intermediate in the production of other chemicals. It is a derivative of phenol and is an isomer of o-cresol and m-cresol. It is a partially lipophilic moiety which strongly binds to plasma protein (close to 100\\%) under normal conditions. p-Cresol is metabolized through conjugation, mainly sulphation and glucuronization, but removal of the unconjugated p-cresol is, at least in part, via the urine. Therefore it is not surprising that this compound, together with several other phenoles, is retained when the kidneys fail. P-Cresol is an end-product of protein breakdown, and an increase of the nutritional protein load in healthy individuals results in enhanced generation and urinary excretion. The serum p-cresol concentration in uremic patients can be decreased by changing to a low-protein diet. p-Cresol is one of the metabolites of the amino acid tyrosine, and to a certain extent also of phenylalanine, which are converted to 4-hydroxyphenylacetic acid by intestinal bacteria, before being decarboxylated to p-cresol (putrefaction). The main contributing bacteria are aerobes (mainly enterobacteria), but to a certain extent also anaerobes play a role (mainly Clostridium perfringens). In uremia, modifications in the intestinal flora result in the specific overgrowth of bacteria that are specific p-cresol producers. The administration of antibiotics reduces urinary excretion of p-cresol, as a result of the liquidation of the producing bacteria. Environmental factors might also contribute. The liver cytochrome P450 metabolizes toluene to benzyl alcohol, but also to o-cresol and p-cresol. Toluene is not only used industrially, but it is also the most widely abusively inhaled solvent. Furthermore, p-cresol is a metabolite of menthofuran, one of the metabolites of R-(+)-pulegone, which is found in extracts from the plants Mentha pulegium and Hedeoma pulegioides, commonly known as pennyroyal oil and pennyroyal tea. These extracts are popular as unconventional herbal therapeutic agents and are applied as abortiva, diaphoretics, emmenagogues, and psychedelic drugs. Pennyroyal oil is extensively used for its pleasant mint-like smell in the flavoring industry. The toxicity of pennyroyal oil and menthofuran is well known. Another compound used in traditional medicine, especially in Japan, which is a precursor of p-cresol is wood tar creosote. p-Cresol has been reported to affect several biochemical, biological and physiological functions: (i) it diminishes the oxygen uptake of rat cerebral cortex slices; (ii) it increases the free active drug concentration of warfarin and diazepam; (iii) it has been related to growth retardation in the weanling pig; (iv) it alters cell membrane permeability, at least in bacteria; (v) it induces LDH leakage from rat liver slices; (vi) it induces susceptibility to auditive epileptic crises; and (vii) it blocks cell K+ channels. (PMID:10570076). p-Cresol is a uremic toxin that is at least partially removed by peritoneal dialysis in haemodialysis patients, and has been involved in the progression of renal failure (PMID:11169029). At concentrations encountered during uremia, p-cresol inhibits phagocyte function and decreases leukocyte adhesion to cytokine-stimulated endothelial cells. (PMID:14681860). p-Cresol can be found in Bacteroides, Bifidobacterium, Clostridium, Enterobacter and Lactobacillus (PMID:2394806; PMID:30208103). As a volatile organic compound, it has been identified as a fecal biomarker of Clostridium difficile infection (PMID:30986230). Present in blackcurrant buds, asparagus, cooked cured pork, black tea, fermented tea, yellow passion fruit juice, malt, peated malt, kumazasa (Sasa albo-marginata), lambs lettuce, squid and cuttlefish. Flavouring ingredient. 4-Methylphenol is found in many foods, some of which are animal foods, cereals and cereal products, tamarind, and tarragon.

   

Benzylamine

Poly(styrene-divinylbenzene), aminomethylated

C7H9N (107.0735)


Benzylamine, also known as a-aminotoluene or moringine, belongs to the class of organic compounds known as phenylmethylamines. Phenylmethylamines are compounds containing a phenylmethtylamine moiety, which consists of a phenyl group substituted by an methanamine. Benzylamine is found, on average, in the highest concentration within a few different foods, such as corns, white cabbages, and cabbages and in a lower concentration in wild carrots, carrots, and apples. Benzylamine has also been detected, but not quantified, in several different foods, such as common chokecherries, black cabbages, macadamia nut (m. tetraphylla), ginsengs, and lettuces. This could make benzylamine a potential biomarker for the consumption of these foods. Alkaloid from Moringa oleifera (horseradish tree) CONFIDENCE standard compound; INTERNAL_ID 8084

   

Stachydrine

(2S)-1,1-dimethylpyrrolidin-1-ium-2-carboxylate

C7H13NO2 (143.0946)


Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. Proline betaine, also known as stachydrine, belongs to the class of organic compounds known as proline and derivatives. Proline and derivatives are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Proline betaine exists in all living organisms, ranging from bacteria to humans. Proline betaine is found, on average, in the highest concentration within capers (Capparis spinosa). Proline betaine has also been detected, but not quantified in, several different foods, such as soy beans (Glycine max), crosnes (Stachys affinis), domestic pigs (Sus scrofa domestica), limes (Citrus aurantiifolia), and triticales (X Triticosecale rimpaui). This could make proline betaine a potential biomarker for the consumption of these foods. Proline betaine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on Proline betaine. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   

Miraxanthin III

Miraxanthin III

C17H18N2O5 (330.1216)


   

Dihydrophaseic acid

(2Z,4E)-3-Methyl-5-[(1S)-1alpha-hydroxy-2,6-dimethyl-2alpha,6alpha-(epoxymethano)-4beta-hydroxycyclohexane-1-yl]-2,4-pentadienoic acid

C15H22O5 (282.1467)


Dihydrophaseic acid is an apo carotenoid sesquiterpenoid that is phaseic acid in which the keto group has been reduced to the corresponding alcohol such that the two hydroxy groups are on opposite sides of the 6-membered ring. It has a role as a metabolite. It is a 6-hydroxy monocarboxylic acid, a cyclic ether, a tertiary alcohol, a secondary alcohol, an apo carotenoid sesquiterpenoid and an alpha,beta-unsaturated monocarboxylic acid. It is functionally related to a phaseic acid. Dihydrophaseic acid is a natural product found in Breynia rostrata, Sophora alopecuroides, and other organisms with data available. Dihydrophaseic acid (DPA), also known as 4-dihydrophaseic acid, belongs to the class of organic compounds known as abscisic acid and derivatives. These are terpene compounds containing the abscisic acid moiety, which is characterized by a 3-methylpenta-2,4-dienoic acid attached to the C1 carbon of a 4-oxocyclohex-2-ene moiety. Dihydrophaseic acid is found in coconut. Dihydrophaseic acid is isolated from French beans. An apo carotenoid sesquiterpenoid that is phaseic acid in which the keto group has been reduced to the corresponding alcohol such that the two hydroxy groups are on opposite sides of the 6-membered ring. Isolated from French beans. Dihydrophaseic acid is found in many foods, some of which are sunflower, corn, pulses, and coconut.

   

Stachydrine

Pyrrolidinium, 2-carboxy-1,1-dimethyl-, inner salt, (2S)-

C7H13NO2 (143.0946)


L-proline betaine is an amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. It has a role as a food component, a plant metabolite and a human blood serum metabolite. It is a N-methyl-L-alpha-amino acid, an alkaloid and an amino-acid betaine. It is functionally related to a L-prolinium. It is a conjugate base of a N,N-dimethyl-L-prolinium. It is an enantiomer of a D-proline betaine. Stachydrine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Stachydrine is a natural product found in Teucrium polium, Halopithys incurva, and other organisms with data available. Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. An amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   

Ephedrine

2-(methylamino)-1-phenylpropan-1-ol

C10H15NO (165.1154)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CA - Alpha- and beta-adrenoreceptor agonists R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.064 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062

   

P-CRESOL

P-CRESOL

C7H8O (108.0575)


A cresol that consists of toluene substituted by a hydroxy group at position 4. It is a metabolite of aromatic amino acid metabolism produced by intestinal microflora in humans and animals.

   

Benzenemethanamine

Poly(styrene-divinylbenzene), aminomethylated

C7H9N (107.0735)


A primary amine compound having benzyl as the N-substituent. It has been isolated from Moringa oleifera (horseradish tree).

   

Cresols

InChI=1\C7H8O\c1-6-2-4-7(8)5-3-6\h2-5,8H,1H

C7H8O (108.0575)


   

Eciphin

Benzenemethanol, alpha-((1S)-1-(methylamino)ethyl)-, (alphaR)-

C10H15NO (165.1154)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AB - Sympathomimetics, combinations excl. corticosteroids R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03C - Adrenergics for systemic use > R03CA - Alpha- and beta-adrenoreceptor agonists R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FB - Sympathomimetics excl. antiglaucoma preparations D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents

   

Monosodium Glutamate

L-(+)Sodium glutamate

C5H8NNaO4 (169.0351)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Glutamate monosodium salt

Glutamate monosodium salt

C5H8NNaO4 (169.0351)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid monosodium salt is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid monosodium salt has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid monosodium salt can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid monosodium salt acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). (S)-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.

   

Miraxanthin-III

Miraxanthin-III

C17H18N2O5 (330.1216)