Exact Mass: 766.4784596

Exact Mass Matches: 766.4784596

Found 500 metabolites which its exact mass value is equals to given mass value 766.4784596, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Cauloside C

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-[(2S,3R,4S,5S)-4,5-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


Akeboside Std is a triterpenoid. Cauloside C is a natural product found in Lonicera japonica, Lonicera macrantha, and other organisms with data available. See also: Caulophyllum robustum Root (part of). Cauloside C is a triterpene glycoside isolated from Caulophyllum robustum Max. Cauloside C exerts anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines[1]. Cauloside C is a triterpene glycoside isolated from Caulophyllum robustum Max. Cauloside C exerts anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines[1].

   

Tautomycin

Tautomycin from Streptomyces spiroverticillatus

C41H66O13 (766.4503186000001)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors

   

(20E)-Ginsenoside F4

2-[2-[[3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside F4 is found in tea. Ginsenoside F4 is isolated from ginseng.

   

Soyasaponin IV

(2S,3S,4S,5R,6R)-6-{[(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C41H66O13 (766.4503186000001)


Soyasaponin IV is a triterpenoid saponin. Soyasaponin IV is a natural product found in Impatiens siculifer and Glycine max with data available. Soyasaponin IV is found in pulses. Soyasaponin IV is a constituent of soya bean Glycine max.

   

Ginsenoside Rg5

2-{[4,5-dihydroxy-2-({16-hydroxy-2,6,6,10,11-pentamethyl-14-[(2Z)-6-methylhepta-2,5-dien-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl}oxy)-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg5 is found in tea. Ginsenoside Rg5 is isolated from ginsen Isolated from ginseng. Ginsenoside Rg5 is found in tea.

   

Ginsenoside Rg6

2-[2-[[3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg6 is found in tea. Ginsenoside Rg6 is isolated from ginseng. Isolated from ginseng. Ginsenoside Rg6 is found in tea. Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect. Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect.

   

Hebevinoside X

2-(hydroxymethyl)-6-{[9-methoxy-1,6,6,11,15-pentamethyl-14-(6-methylhept-5-en-2-yl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-13-yl]oxy}oxane-3,4,5-triol

C42H70O12 (766.486702)


Toxic constituent of the toxic mushroom Hebeloma vinosophyllum. Hebevinoside X is found in mushrooms. Hebevinoside X is found in mushrooms. Toxic constituent of the toxic mushroom Hebeloma vinosophyllu

   

28-Glucosylsiaresinolate 3-arabinoside

(2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl (1S,4ar,6as,6BR,10S,12ar,14BS)-1-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


28-Glucosylsiaresinolate 3-arabinoside is found in herbs and spices. 28-Glucosylsiaresinolate 3-arabinoside is a constituent of Sanguisorba officinalis (burnet bloodwort). Constituent of Sanguisorba officinalis (burnet bloodwort). 28-Glucosylsiaresinolate 3-arabinoside is found in tea and herbs and spices.

   

Pitheduloside A

5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


Pitheduloside A is found in fruits. Pitheduloside A is a constituent of Pithecellobium dulce (manila tamarind) Constituent of Pithecellobium dulce (manila tamarind). Pitheduloside A is found in fruits.

   

PG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z))

[(2R)-2,3-bis[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H71O10P (766.4784596)


PG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the g-linolenic acid moiety is derived from animal fats. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z)), in particular, consists of two 6Z,9Z,12Z-octadecatrienoyl chains at positions C-1 and C-2. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.

   

PG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C42H71O10P (766.4784596)


PG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C42H71O10P (766.4784596)


PG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the g-linolenic acid moiety is derived from animal fats. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the g-linolenic acid moiety is derived from animal fats. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

[(2R)-2,3-bis[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C42H71O10P (766.4784596)


PG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.

   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C45H67O8P (766.4573312)


PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z))

[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]propoxy]phosphonic acid

C45H67O8P (766.4573312)


PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

Dihydrodigitoxin

4-(5-{[5-({5-[(4,5-dihydroxy-6-methyloxan-2-yl)oxy]-4-hydroxy-6-methyloxan-2-yl}oxy)-4-hydroxy-6-methyloxan-2-yl]oxy}-11-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl)oxolan-2-one

C41H66O13 (766.4503186000001)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides

   

ginsenoside Rk1

2-[(4,5-dihydroxy-2-{[16-hydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-1,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

Tautomycin

12-[3,9-Dimethyl-8-(3-methyl-4-oxopentyl)-1,7-dioxaspiro[5.5]undecan-2-yl]-5,9-dihydroxy-4-methoxy-2,8-dimethyl-7-oxotridecan-3-yl 3-hydroxy-3-(4-methyl-2,5-dioxo-2,5-dihydrofuran-3-yl)propanoic acid

C41H66O13 (766.4503186000001)


   

PA(17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-(heptadecanoyloxy)propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/17:0)

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-(heptadecanoyloxy)propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/17:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-(heptadecanoyloxy)propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one heptadecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/17:0)

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-(heptadecanoyloxy)propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/17:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of heptadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

[(2R)-2-{[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(19:2(10Z,13Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of Leukotriene B4 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/19:2(10Z,13Z))

[(2R)-3-{[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy}-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/19:2(10Z,13Z)), in particular, consists of one chain of one Leukotriene B4 at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

[(2R)-2-{[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(19:2(10Z,13Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/19:2(10Z,13Z))

[(2R)-3-{[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy}-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/19:2(10Z,13Z)), in particular, consists of one chain of one 5(S),15(S)-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(19:2(10Z,13Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

[(2R)-2-{[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-3-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(19:2(10Z,13Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(19:2(10Z,13Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)), in particular, consists of one chain of one 10Z,13Z-nonadecadienoyl at the C-1 position and one chain of 5,6-Dihydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/19:2(10Z,13Z))

[(2R)-3-{[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy}-2-[(10Z,13Z)-nonadeca-10,13-dienoyloxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/19:2(10Z,13Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/19:2(10Z,13Z)), in particular, consists of one chain of one 5,6-Dihydroxyeicosatetraenoyl at the C-1 position and one chain of 10Z,13Z-nonadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0)

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(14-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 14-methylhexadecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0)

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(14-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 14-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0)

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-[(15-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one 15-methylhexadecanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0)

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-[(15-methylhexadecanoyl)oxy]propoxy]phosphonic acid

C42H71O10P (766.4784596)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of 15-methylhexadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(a-15:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(12-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C39H75O12P (766.499588)


PG(a-15:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(a-15:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 12-methyltetradecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/a-15:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(12-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C39H75O12P (766.499588)


PG(18:1(12Z)-2OH(9,10)/a-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/a-15:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 12-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-12:0/PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-3-[(10-methylundecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C38H71O13P (766.4632045999999)


PG(i-12:0/PGF1alpha) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-12:0/PGF1alpha), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGF1alpha/i-12:0)

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]heptanoyl}oxy)-2-[(10-methylundecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C38H71O13P (766.4632045999999)


PG(PGF1alpha/i-12:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGF1alpha/i-12:0), in particular, consists of one chain of one Prostaglandin F1alpha at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-15:0/18:1(12Z)-2OH(9,10))

[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(13-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C39H75O12P (766.499588)


PG(i-15:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-15:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 13-methyltetradecanoyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(18:1(12Z)-2OH(9,10)/i-15:0)

[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(13-methyltetradecanoyl)oxy]propoxy][(2S)-2,3-dihydroxypropoxy]phosphinic acid

C39H75O12P (766.499588)


PG(18:1(12Z)-2OH(9,10)/i-15:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(18:1(12Z)-2OH(9,10)/i-15:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 13-methyltetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

SM(d16:2(4E,8Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2-{[(2S,3R,4E,8Z)-3-hydroxy-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenamido]hexadeca-4,8-dien-1-yl phosphono]oxy}ethyl)trimethylazanium

C41H71N2O9P (766.4896926)


SM(d16:2(4E,8Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is a type of oxidized sphingolipid found in animal cell membranes. It usually consists of phosphorylcholine and ceramide. SM(d16:2(4E,8Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) consists of a sphingosine backbone and a Lipoxin A5 chain. In humans, sphingomyelin is the only membrane phospholipid not derived from glycerol. Like all sphingolipids, SM has a ceramide core (sphingosine bonded to a fatty acid via an amide linkage). In addition, it contains one polar head group, which is either phosphocholine or phosphoethanolamine. The plasma membrane of cells is highly enriched in sphingomyelin and is considered largely to be found in the exoplasmic leaflet of the cell membrane. However, there is some evidence that there may also be a sphingomyelin pool in the inner leaflet of the membrane. Moreover, neutral sphingomyelinase-2, an enzyme that breaks down sphingomyelin into ceramide, has been found to localize exclusively to the inner leaflet further suggesting that there may be sphingomyelin present there. Sphingomyelin can accumulate in a rare hereditary disease called Niemann-Pick Disease, types A and B. Niemann-Pick disease is a genetically-inherited disease caused by a deficiency in the enzyme sphingomyelinase, which causes the accumulation of sphingomyelin in spleen, liver, lungs, bone marrow, and the brain, causing irreversible neurological damage. SMs play a role in signal transduction. Sphingomyelins are synthesized by the transfer of phosphorylcholine from phosphatidylcholine to a ceramide in a reaction catalyzed by sphingomyelin synthase.

   

Kudinoside H

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (1R,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxy-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


Ziyuglycoside I is a natural product found in Sanguisorba officinalis, Ilex paraguariensis, and other organisms with data available. Ziyuglycoside I isolated from S. officinalis root, has anti-wrinkle activity, and increases the expression of type I collagen. Ziyuglycoside I could be used as an active ingredient for cosmetics[1]. Ziyuglycoside I triggers cell cycle arrest and apoptosis mediated by p53, it can be a potential agent candidate for treating triple-negative breast cancer (TNBC)[2]. Ziyuglycoside I isolated from S. officinalis root, has anti-wrinkle activity, and increases the expression of type I collagen. Ziyuglycoside I could be used as an active ingredient for cosmetics[1]. Ziyuglycoside I triggers cell cycle arrest and apoptosis mediated by p53, it can be a potential agent candidate for treating triple-negative breast cancer (TNBC)[2]. Ziyuglycoside I isolated from S. officinalis root, has anti-wrinkle activity, and increases the expression of type I collagen. Ziyuglycoside I could be used as an active ingredient for cosmetics[1]. Ziyuglycoside I triggers cell cycle arrest and apoptosis mediated by p53, it can be a potential agent candidate for treating triple-negative breast cancer (TNBC)[2].

   

Ilexoside D

(1S,2R,4Ar,6aS,6aR,6bS,8aS,10R,12aS,14bR)-10-[(2R,3S,4R,5S)-4,5-dihydroxy-3-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


Ilexoside D is isolated from the roots of Ilex pubescens Hook. et Arn. Ilexoside D has the anti-tissue factor activity as well as the antithrombotic activity[1].

   

Ginsenoside Rg6

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg6 is a triterpenoid. Ginsenoside Rg6 is a natural product found in Panax ginseng with data available. Annotation level-1 Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect. Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect.

   

Ginsenoside Rg5

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg5 is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Rg5 is a natural product found in Panax notoginseng and Centella asiatica with data available. A natural product found in Panax japonicus var. major. Annotation level-1 Ginsenoside Rg5 is the main component of Red ginseng. Ginsenoside blocks binding of IGF-1 to its receptor with an IC50 of ~90 nM. Ginsenoside Rg5 also inhibits the mRNA expression of COX-2 via suppression of the DNA binding activities of NF-κB p65. Ginsenoside Rg5 is the main component of Red ginseng. Ginsenoside blocks binding of IGF-1 to its receptor with an IC50 of ~90 nM. Ginsenoside Rg5 also inhibits the mRNA expression of COX-2 via suppression of the DNA binding activities of NF-κB p65.

   

Gisenoside Rk1

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


ginsenoside Rk1 is a natural product found in Panax ginseng, Panax notoginseng, and Centella asiatica with data available. Ginsenoside Rk1 is a unique component created by processing the ginseng plant (mainly Sung Ginseng, SG) at high temperatures[1]. Ginsenoside Rk1 has anti-inflammatory effect, suppresses the activation of Jak2/Stat3 signaling pathway and NF-κB[2]. Ginsenoside Rk1 has anti-tumor effect, antiplatelet aggregation activities, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis[1]. Ginsenoside Rk1 induces cell apoptosis by triggering intracellular reactive oxygen species (ROS) generation and blocking PI3K/Akt pathway[3].

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


ginsenoside Rk1 is a natural product found in Panax ginseng, Panax notoginseng, and Centella asiatica with data available. Ginsenoside Rk1 is a unique component created by processing the ginseng plant (mainly Sung Ginseng, SG) at high temperatures[1]. Ginsenoside Rk1 has anti-inflammatory effect, suppresses the activation of Jak2/Stat3 signaling pathway and NF-κB[2]. Ginsenoside Rk1 has anti-tumor effect, antiplatelet aggregation activities, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis[1]. Ginsenoside Rk1 induces cell apoptosis by triggering intracellular reactive oxygen species (ROS) generation and blocking PI3K/Akt pathway[3].

   
   

Collinsonidin

Hederagenin 3-O-beta-D-glucopyranosyl(1-

C41H66O13 (766.4503186000001)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

C12C(O)(C)C(C=C(C)C)COC2(OC2)CC2(C2(CCC3C4(C)C)C)C1CCC2C3(C)CCC4OC(C1O)OCC(O)C1OC1OC(CO)C(O)C(O)C1O

C12C(O)(C)C(C=C(C)C)COC2(OC2)CC2(C2(CCC3C4(C)C)C)C1CCC2C3(C)CCC4OC(C1O)OCC(O)C1OC1OC(CO)C(O)C(O)C1O

C41H66O13 (766.4503186000001)


   
   
   
   
   
   
   

3-O-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranosyl-22alpha-hydroxyhederagenin

3-O-alpha-L-rhamnopyranosyl-(1->2)-alpha-L-arabinopyranosyl-22alpha-hydroxyhederagenin

C41H66O13 (766.4503186000001)


   

3-beta-[(O-beta-D-glucopyranosyl-(1->4)-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid

3-beta-[(O-beta-D-glucopyranosyl-(1->4)-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid

C41H66O13 (766.4503186000001)


   
   
   
   
   

collinsonidin|hederagenin 3-O-beta-D-glucopyranosyl(1->3)-alpha-L-arabinopyranoside

collinsonidin|hederagenin 3-O-beta-D-glucopyranosyl(1->3)-alpha-L-arabinopyranoside

C41H66O13 (766.4503186000001)


   

3beta-O-beta-D-galactopyranosyl-(1->2)-alpha-L-arabinopyranosyl-19-hydroxyurs-12-en-28-oic acid

3beta-O-beta-D-galactopyranosyl-(1->2)-alpha-L-arabinopyranosyl-19-hydroxyurs-12-en-28-oic acid

C41H66O13 (766.4503186000001)


   

3-O-alpha-L-arabinofuranosyl(1->2)-beta-D-glucopyranosyl jujubogenin|bacopaside III

3-O-alpha-L-arabinofuranosyl(1->2)-beta-D-glucopyranosyl jujubogenin|bacopaside III

C41H66O13 (766.4503186000001)


   

(22S)-3beta-[(beta-D-Glucopyranosyl)oxy]-22-hydroxycholesta-5,24-dien-16beta-yl 3-O-acetyl-alpha-L-rhamnopyranoside

(22S)-3beta-[(beta-D-Glucopyranosyl)oxy]-22-hydroxycholesta-5,24-dien-16beta-yl 3-O-acetyl-alpha-L-rhamnopyranoside

C41H66O13 (766.4503186000001)


   

(S)-(all-Z)-1-Galactosyl-2,3-di(3,6,9,12,15-octadecapentaenoyl)glycerol

(S)-(all-Z)-1-Galactosyl-2,3-di(3,6,9,12,15-octadecapentaenoyl)glycerol

C45H66O10 (766.4655736000001)


   

echinocystic acid 3-O-beta-D-galactopyranosyl-(1->2)-O-alpha-L-arabinopyranoside

echinocystic acid 3-O-beta-D-galactopyranosyl-(1->2)-O-alpha-L-arabinopyranoside

C41H66O13 (766.4503186000001)


   
   

3-O-beta-D-xylopyranosyl-3beta,29-dihydroxyoleanolic acid 28-O-beta-D-glucopyranosyl ester|oblonganoside L

3-O-beta-D-xylopyranosyl-3beta,29-dihydroxyoleanolic acid 28-O-beta-D-glucopyranosyl ester|oblonganoside L

C41H66O13 (766.4503186000001)


   
   

20-(E)-ginsenoside F4

20-(E)-ginsenoside F4

C42H70O12 (766.486702)


   
   

5-Hydroxy-Salinomycin,BAN,INN

5-Hydroxy-Salinomycin,BAN,INN

C42H70O12 (766.486702)


   
   

3-O-beta-D-glucopyranosyl-(1->2)-alpha-L-arabinopyranosyl cyclamiretin A|3-O-beta-D-glucopyranosyl-(1->2)-alpha-L-arabinopyranosylcyclamiretin A

3-O-beta-D-glucopyranosyl-(1->2)-alpha-L-arabinopyranosyl cyclamiretin A|3-O-beta-D-glucopyranosyl-(1->2)-alpha-L-arabinopyranosylcyclamiretin A

C41H66O13 (766.4503186000001)


   
   

Soyasaponin IV

3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C41H66O13 (766.4503186000001)


   

3beta-O-beta-3),beta-D-glucopyranosyl(1->)>cylicodiscic acid|3beta-O-beta-[alpha-L-arabinopyranosyl(1->3),beta-D-glucopyranosyl(1->)]cylicodiscic acid

3beta-O-beta-3),beta-D-glucopyranosyl(1->)>cylicodiscic acid|3beta-O-beta-[alpha-L-arabinopyranosyl(1->3),beta-D-glucopyranosyl(1->)]cylicodiscic acid

C41H66O13 (766.4503186000001)


   

1-O-eicosapentaenoyl-2-O-trans-3-hexadecenoyl-3-phospho(1-glycerol)glycerol

1-O-eicosapentaenoyl-2-O-trans-3-hexadecenoyl-3-phospho(1-glycerol)glycerol

C42H71O10P (766.4784596)


   

(20R,23R)-3beta,20-dihydroxydammar-24-en-21-oic acid-21,23-lactone-3-O-[beta-D-xylopyranosyl(1?3)]-beta-D-glucopyranoside|Gypenbioside B

(20R,23R)-3beta,20-dihydroxydammar-24-en-21-oic acid-21,23-lactone-3-O-[beta-D-xylopyranosyl(1?3)]-beta-D-glucopyranoside|Gypenbioside B

C41H66O13 (766.4503186000001)


   

3beta,12alpha-dihydroxyolean-28,13beta-olide 3-O-beta-D-glucopyranosyl-(1?2)-alpha-L-arabinopyranoside|paritriside A

3beta,12alpha-dihydroxyolean-28,13beta-olide 3-O-beta-D-glucopyranosyl-(1?2)-alpha-L-arabinopyranoside|paritriside A

C41H66O13 (766.4503186000001)


   

anagalligenone-3-O-[beta-D-glucopyranosyl(1?4)-alpha-L-arabinopyranoside]

anagalligenone-3-O-[beta-D-glucopyranosyl(1?4)-alpha-L-arabinopyranoside]

C41H66O13 (766.4503186000001)


   

1-O-palmitoyl-2-O-myristoyl-3-O-(6-sulfo-alpha-D-quinovopyranosyl)-glycerol

1-O-palmitoyl-2-O-myristoyl-3-O-(6-sulfo-alpha-D-quinovopyranosyl)-glycerol

C39H74O12S (766.4900724)


   

3-O-beta-D-glucopyranosyl-hederagenin 23-O-alpha-D-ribofuranoside

3-O-beta-D-glucopyranosyl-hederagenin 23-O-alpha-D-ribofuranoside

C41H66O13 (766.4503186000001)


   

27-hydroxyoleanoic acid 3-O-beta-D-glucopyranosyl-(1->4)-alpha-L-arabinopyranoside|raddeanoside Ra

27-hydroxyoleanoic acid 3-O-beta-D-glucopyranosyl-(1->4)-alpha-L-arabinopyranoside|raddeanoside Ra

C41H66O13 (766.4503186000001)


   
   

(23R,24S)-16beta,23;16alpha,24-diepoxycycloartam-3beta,25-diol 3-O-beta-D-xylopyranoside 25-O-beta-D-glucopyranoside|(23R,24S)-16beta,23;16alpha,24-diepoxycycloartan-3beta,25-diol 25-O-beta-D-glucopyranoside 3-O-4b-D-xylopyranoside|cycloorbicoside C

(23R,24S)-16beta,23;16alpha,24-diepoxycycloartam-3beta,25-diol 3-O-beta-D-xylopyranoside 25-O-beta-D-glucopyranoside|(23R,24S)-16beta,23;16alpha,24-diepoxycycloartan-3beta,25-diol 25-O-beta-D-glucopyranoside 3-O-4b-D-xylopyranoside|cycloorbicoside C

C41H66O13 (766.4503186000001)


   

tuberogenin 3-O-beta-D-oleandropyranosyl(1->4)-beta-D-digitoxopyranosyl-(1->4)-beta-D-oleandropyranoside|tuberoside M5

tuberogenin 3-O-beta-D-oleandropyranosyl(1->4)-beta-D-digitoxopyranosyl-(1->4)-beta-D-oleandropyranoside|tuberoside M5

C41H66O13 (766.4503186000001)


   
   
   

hederagenin 3-O-2)-alpha-L-arabinopyranoside>|hederagenin 3-O-[O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranoside]

hederagenin 3-O-2)-alpha-L-arabinopyranoside>|hederagenin 3-O-[O-beta-D-glucopyranosyl-(1-->2)-alpha-L-arabinopyranoside]

C41H66O13 (766.4503186000001)


   

23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1->4)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-enoic acid|23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1->4)-O-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid

23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1->4)-alpha-L-arabinopyranosyl)oxy]lup-20(29)-enoic acid|23-hydroxy-3beta-[(O-beta-D-glucopyranosyl-(1->4)-O-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid

C41H66O13 (766.4503186000001)


   

28-O-beta-D-apiosyl(1->2)-beta-D-glucopyranosylhederagenin

28-O-beta-D-apiosyl(1->2)-beta-D-glucopyranosylhederagenin

C41H66O13 (766.4503186000001)


   
   
   

30-acetyl nigericin

30-acetyl nigericin

C42H70O12 (766.486702)


   

echinocystic acid 3-O-beta-D-glucopyranosyl-(1->3)-alpha-L-arabinopyranoside|echinocystic acid 3-O-beta-D-glucopyranosyl-(1->3)-O-alpha-L-arabinopyranoside

echinocystic acid 3-O-beta-D-glucopyranosyl-(1->3)-alpha-L-arabinopyranoside|echinocystic acid 3-O-beta-D-glucopyranosyl-(1->3)-O-alpha-L-arabinopyranoside

C41H66O13 (766.4503186000001)


   
   

23-hydroxy-3beta-[(O-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid 28-O-beta-D-glucopyranosyl ester

23-hydroxy-3beta-[(O-alpha-L-arabinopyranosyl)oxy]lup-20(29)-en-28-oic acid 28-O-beta-D-glucopyranosyl ester

C41H66O13 (766.4503186000001)


   

3-O-beta-D-glucopyranosyl-20-O-alpha-L-rhamnopyranosyljujubogenin

3-O-beta-D-glucopyranosyl-20-O-alpha-L-rhamnopyranosyljujubogenin

C41H66O13 (766.4503186000001)


   

3-O-[alpha-L-rhamnopyranosyl(1->2)-beta-D-xylopyranosyl]-3beta,12alpha,17alpha,20(S)-tetrahydroxylanost-9(11)-en-18,20-olide

3-O-[alpha-L-rhamnopyranosyl(1->2)-beta-D-xylopyranosyl]-3beta,12alpha,17alpha,20(S)-tetrahydroxylanost-9(11)-en-18,20-olide

C41H66O13 (766.4503186000001)


   

FJ-3 acid

(4aS,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-[(2S,3R,4R,5S)-3,4-dihydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


Scabioside C is a natural product found in Pulsatilla campanella with data available.

   

Bacopaside V

(2S,3R,4S,5S,6R)-2-[(2S,3R,4S,5S)-3,5-dihydroxy-2-[[(1S,2R,5R,7S,10R,11R,14R,15S,16S,17R,20R)-16-hydroxy-2,6,6,10,16-pentamethyl-17-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C41H66O13 (766.4503186000001)


Bacopaside V is a natural product found in Bacopa monnieri with data available.

   

Bacopaside IV

(2R,3S,4R,5R,6S)-2-[(2R,3S,4R,5R)-3,5-Dihydroxy-2-[[(1R,2S,5S,7R,10S,11S,14S,15R,16R,18S,20R)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-enyl)-19,21-dioxahexacyclo[18.2.1.01,14.02,11.05,10.015,20]tricosan-7-yl]oxy]oxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C41H66O13 (766.4503186000001)


   
   
   

C42H70O12_(3beta,6alpha,9xi,12beta,20Z)-3,12-Dihydroxydammara-20(22),24-dien-6-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside

NCGC00384601-01_C42H70O12_(3beta,6alpha,9xi,12beta,20Z)-3,12-Dihydroxydammara-20(22),24-dien-6-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside

C42H70O12 (766.486702)


   

C41H66O13_Olean-12-en-28-oic acid, 3-[(2-O-beta-D-glucopyranosyl-alpha-L-arabinopyranosyl)oxy]-23-hydroxy-, (5xi,9xi)

NCGC00347737-02_C41H66O13_Olean-12-en-28-oic acid, 3-[(2-O-beta-D-glucopyranosyl-alpha-L-arabinopyranosyl)oxy]-23-hydroxy-, (5xi,9xi)-

C41H66O13 (766.4503186000001)


   

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

Soyasapogenol B base + O-HexA-Pen

Soyasapogenol B base + O-HexA-Pen

C41H66O13 (766.4503186000001)


Annotation level-3

   

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol_major

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol_major

C42H70O12 (766.486702)


   

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,?.0¹¹,¹?]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,?.0¹¹,¹?]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

MGDG(18:5(3Z,6Z,9Z,12Z,15Z)/18:5(3Z,6Z,9Z,12Z,15Z))

1,2-di-(3Z,6Z,9Z,12Z,15Z-octadecapentaenoyl)-3-O-beta-D-galactosyl-sn-glycerol

C45H66O10 (766.4655736000001)


   

PG(36:6)

1-(9Z,12Z,15Z-Octadeatrienoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-sn-glycero-3-phospho-(1-glycerol)

C42H71O10P (766.4784596)


   

PG(16:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(9Z-hexadecenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H71O10P (766.4784596)


   

PG(18:2(9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

1-(9Z,12Z-octadecadienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H71O10P (766.4784596)


   

PG(18:4(6Z,9Z,12Z,15Z)/18:2(9Z,12Z))

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H71O10P (766.4784596)


   

PG(20:5(5Z,8Z,11Z,14Z,17Z)/16:1(9Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H71O10P (766.4784596)


   

PG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:0)

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-sn-glycerol)

C42H71O10P (766.4784596)


   

PG(14:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-tetradecanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H71O10P (766.4784596)


   

PI(12:0/17:1(9Z))

1-dodecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(13:0/16:1(9Z))

1-tridecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(14:0/15:1(9Z))

1-tetradecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(14:1(9Z)/15:0)

1-(9Z-tetradecenoyl)-2-pentadecanoyl-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(15:0/14:1(9Z))

1-pentadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(15:1(9Z)/14:0)

1-(9Z-pentadecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(16:1(9Z)/13:0)

1-(9Z-hexadecenoyl)-2-tridecanoyl-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(17:1(9Z)/12:0)

1-(9Z-heptadecenoyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI(O-16:0/14:1(9Z))

1-hexadecyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

C39H75O12P (766.499588)


   

PI(P-16:0/14:0)

1-(1Z-hexadecenyl)-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C39H75O12P (766.499588)


   

PI(P-18:0/12:0)

1-(1Z-octadecenyl)-2-dodecanoyl-glycero-3-phospho-(1-myo-inositol)

C39H75O12P (766.499588)


   

PA(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:5(5Z,8Z,11Z,14Z,17Z))

1-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phosphate

C45H67O8P (766.4573312)


   

PA(20:5(5Z,8Z,11Z,14Z,17Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C45H67O8P (766.4573312)


   

Pitheduloside A

5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

g-RG5

2-{[4,5-dihydroxy-2-({16-hydroxy-2,6,6,10,11-pentamethyl-14-[(2Z)-6-methylhepta-2,5-dien-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-yl}oxy)-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(20E)-Ginsenoside F4

2-{[2-({5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-[(2E)-6-methylhepta-2,5-dien-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

Hebevinoside X

2-(hydroxymethyl)-6-{[9-methoxy-1,6,6,11,15-pentamethyl-14-(6-methylhept-5-en-2-yl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-13-yl]oxy}oxane-3,4,5-triol

C42H70O12 (766.486702)


   

28-Glucosylsiaresinolate 3-arabinoside

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

SQDG 30:0

1-tetradecanoyl-2-hexadecanoyl-3-(6-sulfo-alpha-D-quinovosyl)-sn-glycerol

C39H74O12S (766.4900724)


   

MGDG 36:10

1,2-di-(3Z,6Z,9Z,12Z,15Z-octadecapentaenoyl)-3-O-beta-D-galactosyl-sn-glycerol

C45H66O10 (766.4655736000001)


   

PG 36:6

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z-octadecadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C42H71O10P (766.4784596)


   

PI 29:1

1-(9Z-pentadecenoyl)-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   

PI O-30:1

1-(1Z-hexadecenyl)-2-tetradecanoyl-glycero-3-phospho-(1-myo-inositol)

C39H75O12P (766.499588)


   

PA 42:11

1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-phosphate

C45H67O8P (766.4573312)


   

Bisoprolol Fumarate

bis{1-{4-[(2-isopropoxyethoxy)methyl]phenoxy}-3-(isopropylamino)propan-2-ol} (2E)-but-2-enedioic acid

C40H66N2O12 (766.4615516000001)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

ginsenoside F4

ginsenoside Rg4

C42H70O12 (766.486702)


Isolated from ginseng. Ginsenoside F4 is found in tea.

   
   
   

PG(a-15:0/18:1(12Z)-2OH(9,10))

PG(a-15:0/18:1(12Z)-2OH(9,10))

C39H75O12P (766.499588)


   

PG(18:1(12Z)-2OH(9,10)/a-15:0)

PG(18:1(12Z)-2OH(9,10)/a-15:0)

C39H75O12P (766.499588)


   

PG(i-15:0/18:1(12Z)-2OH(9,10))

PG(i-15:0/18:1(12Z)-2OH(9,10))

C39H75O12P (766.499588)


   

PG(18:1(12Z)-2OH(9,10)/i-15:0)

PG(18:1(12Z)-2OH(9,10)/i-15:0)

C39H75O12P (766.499588)


   

PA(17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C42H71O10P (766.4784596)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/17:0)

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/17:0)

C42H71O10P (766.4784596)


   

PA(17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C42H71O10P (766.4784596)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/17:0)

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/17:0)

C42H71O10P (766.4784596)


   

PA(19:2(10Z,13Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

PA(19:2(10Z,13Z)/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))

C42H71O10P (766.4784596)


   

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/19:2(10Z,13Z))

PA(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/19:2(10Z,13Z))

C42H71O10P (766.4784596)


   

PA(19:2(10Z,13Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

PA(19:2(10Z,13Z)/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))

C42H71O10P (766.4784596)


   

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/19:2(10Z,13Z))

PA(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/19:2(10Z,13Z))

C42H71O10P (766.4784596)


   

PA(19:2(10Z,13Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

PA(19:2(10Z,13Z)/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))

C42H71O10P (766.4784596)


   

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/19:2(10Z,13Z))

PA(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/19:2(10Z,13Z))

C42H71O10P (766.4784596)


   

PA(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(a-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C42H71O10P (766.4784596)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0)

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-17:0)

C42H71O10P (766.4784596)


   

PA(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(a-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C42H71O10P (766.4784596)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0)

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-17:0)

C42H71O10P (766.4784596)


   

PA(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(i-17:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C42H71O10P (766.4784596)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0)

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-17:0)

C42H71O10P (766.4784596)


   

PA(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(i-17:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C42H71O10P (766.4784596)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0)

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-17:0)

C42H71O10P (766.4784596)


   

SM(d16:2(4E,8Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

SM(d16:2(4E,8Z)/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C41H71N2O9P (766.4896926)


   

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C42H73NO9P+ (766.5022677999999)


   

20,22-Dihydrodigitoxin

20,22-Dihydrodigitoxin

C41H66O13 (766.4503186000001)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides

   

(2R,3S,4R,5R,6R)-2-(hydroxymethyl)-6-[[(7R,9S,10R,13R,14S,16S)-7-methoxy-4,4,9,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-16-yl]oxy]oxane-3,4,5-triol

(2R,3S,4R,5R,6R)-2-(hydroxymethyl)-6-[[(7R,9S,10R,13R,14S,16S)-7-methoxy-4,4,9,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-16-yl]oxy]oxane-3,4,5-triol

C42H70O12 (766.486702)


   

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-[[12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-[[12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

3-[(2-O-Hexopyranosylpentopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid

3-[(2-O-Hexopyranosylpentopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid

C41H66O13 (766.4503186000001)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] pentadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] pentadecanoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecoxypropan-2-yl] (Z)-heptadec-9-enoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] dodecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] dodecanoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] undecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-nonadec-9-enoxy]propan-2-yl] undecanoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentadecoxypropan-2-yl] (Z)-pentadec-9-enoate

C39H75O12P (766.499588)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C39H75O12P (766.499588)


   

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

[1-[(Z)-heptadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] decanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] decanoate

C39H75O12P (766.499588)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] heptadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] heptadecanoate

C39H75O12P (766.499588)


   

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-heptadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-nonadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecoxypropan-2-yl] (Z)-nonadec-9-enoate

C39H75O12P (766.499588)


   

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C39H75O12P (766.499588)


   

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (Z)-hexadec-9-enoate

C39H75O12P (766.499588)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] hexadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] hexadecanoate

C39H75O12P (766.499588)


   
   

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] heptadecanoate

C38H70O15 (766.471447)


   

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexadecanoate

[1-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] hexadecanoate

C38H70O15 (766.471447)


   

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] henicosanoate

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] henicosanoate

C38H70O15 (766.471447)


   

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadecanoate

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octadecanoate

C38H70O15 (766.471447)


   

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] icosanoate

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] icosanoate

C38H70O15 (766.471447)


   

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonadecanoate

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonadecanoate

C38H70O15 (766.471447)


   

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate

[1-Nonanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tetradecanoate

C38H70O15 (766.471447)


   

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate

[1-Octanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] pentadecanoate

C38H70O15 (766.471447)


   

[6-(2-Hexadecanoyloxy-3-tetradecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(2-Hexadecanoyloxy-3-tetradecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate

[1-Decanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate

C38H70O15 (766.471447)


   

[1-[3,4,5-Trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] dodecanoate

[1-[3,4,5-Trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] dodecanoate

C38H70O15 (766.471447)


   

[6-(3-Dodecanoyloxy-2-octadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(3-Dodecanoyloxy-2-octadecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[6-(2-Heptadecanoyloxy-3-tridecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-(2-Heptadecanoyloxy-3-tridecanoyloxypropoxy)-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[6-[2,3-Di(pentadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2,3-Di(pentadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H66O10 (766.4655736000001)


   

(1S,3S,10S,12S,16R)-10-hydroxy-7,7,12,16-tetramethyl-15-[6-methyl-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyheptan-2-yl]pentacyclo[9.7.0.01,3.03,8.012,16]octadec-5-en-4-one

(1S,3S,10S,12S,16R)-10-hydroxy-7,7,12,16-tetramethyl-15-[6-methyl-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-5-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyheptan-2-yl]pentacyclo[9.7.0.01,3.03,8.012,16]octadec-5-en-4-one

C41H66O13 (766.4503186000001)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C42H71O10P (766.4784596)


   

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C42H71O10P (766.4784596)


   

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[[2-[(Z)-hexadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H71O10P (766.4784596)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H71O10P (766.4784596)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C42H71O10P (766.4784596)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-tetradecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H71O10P (766.4784596)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C42H71O10P (766.4784596)


   

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H71O10P (766.4784596)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C42H71O10P (766.4784596)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-tetracos-13-enoate

C38H71O13P (766.4632045999999)


   

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

C38H71O13P (766.4632045999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-icos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] (Z)-icos-11-enoate

C38H71O13P (766.4632045999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-henicos-11-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] (Z)-henicos-11-enoate

C38H71O13P (766.4632045999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C42H71O10P (766.4784596)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C42H71O10P (766.4784596)


   

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] hexadecanoate

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tridec-9-enoyl]oxypropyl] hexadecanoate

C38H71O13P (766.4632045999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C42H71O10P (766.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H71O10P (766.4784596)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C42H71O10P (766.4784596)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (Z)-octadec-9-enoate

C38H71O13P (766.4632045999999)


   

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

[1-dodecanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-heptadec-9-enoate

C38H71O13P (766.4632045999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C42H71O10P (766.4784596)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

C38H71O13P (766.4632045999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C42H71O10P (766.4784596)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H71O10P (766.4784596)


   

[1-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C45H67O8P (766.4573312)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-octadec-9-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (Z)-octadec-9-enoate

C42H71O10P (766.4784596)


   

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

[1-decanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-nonadec-9-enoate

C38H71O13P (766.4632045999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate

C38H71O13P (766.4632045999999)


   

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] pentadecanoate

[3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] pentadecanoate

C38H71O13P (766.4632045999999)


   

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-hexacos-15-enoate

C38H71O13P (766.4632045999999)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2R)-2-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-heptadec-9-enoate

[(2R)-2-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (E)-heptadec-9-enoate

C38H71O13P (766.4632045999999)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C42H71O10P (766.4784596)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] (5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C45H67O8P (766.4573312)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-pentadec-9-enoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (E)-pentadec-9-enoate

C38H71O13P (766.4632045999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-11-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-11-enoate

C38H71O13P (766.4632045999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-13-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-13-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-9-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H71O10P (766.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-7-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H71O10P (766.4784596)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-11-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-11-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C42H71O10P (766.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C42H71O10P (766.4784596)


   

[(2S,3S,6S)-6-[(2S)-2,3-di(pentadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-di(pentadecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C42H71O10P (766.4784596)


   

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate

[(2S)-1-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] tridecanoate

C38H70O15 (766.471447)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C42H71O10P (766.4784596)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-hexadec-7-enoyl]oxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H71O10P (766.4784596)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C45H66O10 (766.4655736000001)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C42H71O10P (766.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C42H71O10P (766.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C42H71O10P (766.4784596)


   

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H67O8P (766.4573312)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-nonadecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-nonadecanoyloxy-3-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-9-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-9-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-heptadec-9-enoate

[(2R)-1-dodecanoyloxy-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropan-2-yl] (E)-heptadec-9-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-hexadec-9-enoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C42H71O10P (766.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H71O10P (766.4784596)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] octadec-17-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] octadec-17-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C42H71O10P (766.4784596)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-pentadec-9-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (E)-pentadec-9-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] octadec-17-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] octadec-17-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C42H71O10P (766.4784596)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C42H71O10P (766.4784596)


   

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H71O10P (766.4784596)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C42H71O10P (766.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C42H71O10P (766.4784596)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-tetradecanoyloxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H71O10P (766.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C42H71O10P (766.4784596)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] pentadecanoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] pentadecanoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-hexadec-7-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C42H71O10P (766.4784596)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-4-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-4-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C42H71O10P (766.4784596)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-6-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-6-enoate

C38H71O13P (766.4632045999999)


   

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] tridecanoate

[(2S)-2-decanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] tridecanoate

C38H70O15 (766.471447)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-7-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-7-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-hexadec-7-enoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-hexadec-7-enoate

C38H71O13P (766.4632045999999)


   

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] dodecanoate

[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] dodecanoate

C38H70O15 (766.471447)


   

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C45H67O8P (766.4573312)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-hexadec-9-enoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-tridecanoyloxypropyl] (E)-hexadec-9-enoate

C38H71O13P (766.4632045999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-6-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-6-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C42H71O10P (766.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C42H71O10P (766.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C42H71O10P (766.4784596)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C42H71O10P (766.4784596)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoate

C45H66O10 (766.4655736000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C42H71O10P (766.4784596)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-heptadecanoyloxy-3-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-13-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (E)-octadec-13-enoate

C38H71O13P (766.4632045999999)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-9-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-9-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

[(2R)-1-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-3-tridecanoyloxypropan-2-yl] (E)-hexadec-9-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C42H71O10P (766.4784596)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C42H71O10P (766.4784596)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E)-docosa-4,7,10,13,16-pentaenoate

C42H71O10P (766.4784596)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-7-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-7-enoate

C38H71O13P (766.4632045999999)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C42H71O10P (766.4784596)


   

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-octadecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] pentadecanoate

[(2R)-3-[hydroxy-[(5R)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] pentadecanoate

C38H71O13P (766.4632045999999)


   

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-heptadecanoyloxy-2-tridecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] dodecanoate

[(2S)-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-2-undecanoyloxypropyl] dodecanoate

C38H70O15 (766.471447)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C42H71O10P (766.4784596)


   

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-4-enoate

[(2S)-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxy-2-undecanoyloxypropyl] (E)-octadec-4-enoate

C38H71O13P (766.4632045999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-nonadecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-nonadecanoyloxy-2-undecanoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (E)-icos-11-enoate

[3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (E)-icos-11-enoate

C42H71O10P (766.4784596)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (8E,11E,14E,17E,20E,23E)-hexacosa-8,11,14,17,20,23-hexaenoate

C45H67O8P (766.4573312)


   

Tautomycin from Streptomyces spiroverticillatus

Tautomycin from Streptomyces spiroverticillatus

C41H66O13 (766.4503186000001)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors

   

PG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z))

PG(18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z))

C42H71O10P (766.4784596)


   

1-hexadecyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

1-hexadecyl-2-(9Z-tetradecenoyl)-glycero-3-phospho-(1-myo-inositol)

C39H75O12P (766.499588)


   

1-tridecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

1-tridecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phospho-(1-myo-inositol)

C38H71O13P (766.4632045999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-14:0/16:0 or PI O-14:1/16:0

PI P-14:0/16:0 or PI O-14:1/16:0

C39H75O12P (766.499588)


   
   

PI P-16:0/14:0 or PI O-16:1/14:0

PI P-16:0/14:0 or PI O-16:1/14:0

C39H75O12P (766.499588)


   
   

PI P-18:0/12:0 or PI O-18:1/12:0

PI P-18:0/12:0 or PI O-18:1/12:0

C39H75O12P (766.499588)


   
   

PI P-20:0/10:0 or PI O-20:1/10:0

PI P-20:0/10:0 or PI O-20:1/10:0

C39H75O12P (766.499588)


   
   
   

PI P-30:0 or PI O-30:1

PI P-30:0 or PI O-30:1

C39H75O12P (766.499588)


   
   
   
   
   
   
   
   

(1r,3as,5ar,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r,5r)-5-hydroxy-6-methylhept-6-en-2-yl]-6,6,9a,11a-tetramethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(1r,3as,5ar,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r,5r)-5-hydroxy-6-methylhept-6-en-2-yl]-6,6,9a,11a-tetramethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C41H66O13 (766.4503186000001)


   

10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

2-[(2-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(2-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

2-[(7-hydroxy-3a,6,6,9a,11a-pentamethyl-1-{6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]hept-5-en-2-yl}-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(7-hydroxy-3a,6,6,9a,11a-pentamethyl-1-{6-methyl-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]hept-5-en-2-yl}-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl 10-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-3,5-dihydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18s,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-3,5-dihydroxy-2-{[(1s,2r,5r,7s,10r,11r,14r,15s,16s,18s,20s)-16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2r,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

10-[(3,4-dihydroxy-5-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-[(3,4-dihydroxy-5-{[2,4,5-trihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (4as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-2,2,9,9,12a,14b-hexamethyl-3,4,5,6,6b,7,8,8a,10,11,12,12b,13,14-tetradecahydro-1h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (4as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-2,2,9,9,12a,14b-hexamethyl-3,4,5,6,6b,7,8,8a,10,11,12,12b,13,14-tetradecahydro-1h-picene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-(hydroxymethyl)-2,6a,6b,9,9,12a-hexamethyl-10-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-(hydroxymethyl)-2,6a,6b,9,9,12a-hexamethyl-10-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5ar,7s,9ar,9br,11r,11ar)-11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

3β-[(α-l-arabinopyranosyl)oxy]-19α-hydroxy-olean-12-en-28-oicacid 28-β-d-glucopyranos-yl ester

NA

C41H66O13 (766.4503186000001)


{"Ingredient_id": "HBIN008166","Ingredient_name": "3\u03b2-[(\u03b1-l-arabinopyranosyl)oxy]-19\u03b1-hydroxy-olean-12-en-28-oicacid 28-\u03b2-d-glucopyranos-yl ester","Alias": "NA","Ingredient_formula": "C41H66O13","Ingredient_Smile": "CC1CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)C)OC6C(C(C(CO6)O)O)O)C)C)C2C1(C)O)C)C(=O)OC7C(C(C(C(O7)CO)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14348","TCMID_id": "1580","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3β-[(α-l-arabinopyranosyl)oxy]-19α-hy-droxyurs-12-en-28-oicacid 28-β-d-glucopyra-nosyl ester

NA

C41H66O13 (766.4503186000001)


{"Ingredient_id": "HBIN008170","Ingredient_name": "3\u03b2-[(\u03b1-l-arabinopyranosyl)oxy]-19\u03b1-hy-droxyurs-12-en-28-oicacid 28-\u03b2-d-glucopyra-nosyl ester","Alias": "NA","Ingredient_formula": "C41H66O13","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14354","TCMID_id": "1586","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

3β-[(α-l-arabinopyranosyl)oxy]-23-hydroxy-olean-12-en-28-oicacid 28-β-d-glucopyranos-yl ester

NA

C41H66O13 (766.4503186000001)


{"Ingredient_id": "HBIN008172","Ingredient_name": "3\u03b2-[(\u03b1-l-arabinopyranosyl)oxy]-23-hydroxy-olean-12-en-28-oicacid 28-\u03b2-d-glucopyranos-yl ester","Alias": "NA","Ingredient_formula": "C41H66O13","Ingredient_Smile": "CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(CCC(C5(C)CO)OC6C(C(C(CO6)O)O)O)C)C)C2C1)C)C(=O)OC7C(C(C(C(O7)CO)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT14349","TCMID_id": "1581","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

acanthoside k3

NA

C42H70O12 (766.486702)


{"Ingredient_id": "HBIN014353","Ingredient_name": "acanthoside k3","Alias": "NA","Ingredient_formula": "C42H70O12","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "88","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

bacopaside iiib*

NA

C41H66O13 (766.4503186000001)


{"Ingredient_id": "HBIN017497","Ingredient_name": "bacopaside iiib*","Alias": "NA","Ingredient_formula": "C41H66O13","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2089","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

bacopaside iv

NA

C41H66O13 (766.4503186000001)


{"Ingredient_id": "HBIN017498","Ingredient_name": "bacopaside iv","Alias": "NA","Ingredient_formula": "C41H66O13","Ingredient_Smile": "CC(=CC1CC(C2C3CCC4C5(CCC(C(C5CCC4(C36CC2(O1)OC6)C)(C)C)OC7C(C(C(CO7)O)OC8C(C(C(C(O8)CO)O)O)O)O)C)(C)O)C","Ingredient_weight": "767 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2090","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "10865594","DrugBank_id": "NA"}

   

bacopaside v

NA

C41H66O13 (766.4503186000001)


{"Ingredient_id": "HBIN017501","Ingredient_name": "bacopaside v","Alias": "NA","Ingredient_formula": "C41H66O13","Ingredient_Smile": "CC(=CC1COC23CC4(CO2)C(C3C1(C)O)CCC5C4(CCC6C5(CCC(C6(C)C)OC7C(C(C(CO7)O)OC8C(C(C(C(O8)CO)O)O)O)O)C)C)C","Ingredient_weight": "767 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2093","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "101219808","DrugBank_id": "NA"}

   

7-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-1-(5-hydroxy-6-methylhept-6-en-2-yl)-6,6,9a,11a-tetramethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

7-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-1-(5-hydroxy-6-methylhept-6-en-2-yl)-6,6,9a,11a-tetramethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5ar,5br,7ar,11ar,13ar,13br)-10-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5ar,5br,7ar,11ar,13ar,13br)-10-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-(hydroxymethyl)-2,6a,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2-(hydroxymethyl)-2,6a,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14br)-10-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-3,5-dihydroxy-2-{[(1s,2r,5r,7s,10r,11s,14s,15r,16s,17r,20r)-16-hydroxy-2,6,6,10,16-pentamethyl-17-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4s,5s)-3,5-dihydroxy-2-{[(1s,2r,5r,7s,10r,11s,14s,15r,16s,17r,20r)-16-hydroxy-2,6,6,10,16-pentamethyl-17-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(4as,6as,6bs,8ar,9r,10r,12as,12br,14br)-10-{[(2s,3s,4s,5s)-3,4-dihydroxy-5-({[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6bs,8ar,9r,10r,12as,12br,14br)-10-{[(2s,3s,4s,5s)-3,4-dihydroxy-5-({[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(1r,3as,5as,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r,5r)-5-hydroxy-6-methylhept-6-en-2-yl]-6,6,9a,11a-tetramethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

(1r,3as,5as,7s,9as,11ar)-7-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-[(2r,5r)-5-hydroxy-6-methylhept-6-en-2-yl]-6,6,9a,11a-tetramethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6a-(hydroxymethyl)-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6a-(hydroxymethyl)-2,2,6b,9,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2r,3r,4r,5s,6s)-2-{[(1r,2s,3as,3bs,7s,9ar,9bs,11as)-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl acetate

(2r,3r,4r,5s,6s)-2-{[(1r,2s,3as,3bs,7s,9ar,9bs,11as)-1-[(2s,3s)-3-hydroxy-6-methylhept-5-en-2-yl]-9a,11a-dimethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl acetate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(1s,2r,4s,5r,8r,10s,13r,14r,17s,18r,20s)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-4,5,9,9,13,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosane-20-carbaldehyde

(1s,2r,4s,5r,8r,10s,13r,14r,17s,18r,20s)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-hydroxy-4,5,9,9,13,20-hexamethyl-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosane-20-carbaldehyde

C41H66O13 (766.4503186000001)


   

(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

2-[(4,5-dihydroxy-2-{[11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(4,5-dihydroxy-2-{[11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,5r,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(4as,6ar,6br,8ar,9r,10s,12ar,12bs,14br)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6ar,6br,8ar,9r,10s,12ar,12bs,14br)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3r,4r,5s)-3-hydroxy-5-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2r,3r,4r,5s)-3-hydroxy-5-(hydroxymethyl)-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

2-[(4,5-dihydroxy-2-{[10-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(4,5-dihydroxy-2-{[10-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

2-[(2-{[8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(2-{[8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

2-[(4,5-dihydroxy-2-{[11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(4,5-dihydroxy-2-{[11-hydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(3r,4s,5r,8s,9s,12r)-12-[(2s,3s,6r,8s,9r)-3,9-dimethyl-8-[(3s)-3-methyl-4-oxopentyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-5,9-dihydroxy-4-methoxy-2,8-dimethyl-7-oxotridecan-3-yl (3r)-3-hydroxy-3-(4-methyl-2,5-dioxofuran-3-yl)propanoate

(3r,4s,5r,8s,9s,12r)-12-[(2s,3s,6r,8s,9r)-3,9-dimethyl-8-[(3s)-3-methyl-4-oxopentyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-5,9-dihydroxy-4-methoxy-2,8-dimethyl-7-oxotridecan-3-yl (3r)-3-hydroxy-3-(4-methyl-2,5-dioxofuran-3-yl)propanoate

C41H66O13 (766.4503186000001)


   

(2s,3s,4r,5r,6s)-6-({[(3s,4r,4ar,6ar,6bs,8s,8ar,9r,10r,12as,14as,14br)-8,9,10-trihydroxy-4-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-8a-({[(2r)-2-methylbutanoyl]oxy}methyl)-2,3,4a,5,6,6b,7,8,9,10,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}methyl)-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4r,5r,6s)-6-({[(3s,4r,4ar,6ar,6bs,8s,8ar,9r,10r,12as,14as,14br)-8,9,10-trihydroxy-4-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-8a-({[(2r)-2-methylbutanoyl]oxy}methyl)-2,3,4a,5,6,6b,7,8,9,10,12,12a,14,14a-tetradecahydro-1h-picen-3-yl]oxy}methyl)-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H66O13 (766.4503186000001)


   

5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[16-hydroxy-2,6,6,10,16-pentamethyl-18-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

C41H66O13 (766.4503186000001)


   

(4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9s,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3as,5ar,7r,9as,9br,10r,11as)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1-[(2r,4s)-6-methyl-4-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}hept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3as,5ar,7r,9as,9br,10r,11as)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1-[(2r,4s)-6-methyl-4-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}hept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 10-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-1-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

{6-[3-(hexadecanoyloxy)-2-(tetradecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl}methanesulfonic acid

{6-[3-(hexadecanoyloxy)-2-(tetradecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl}methanesulfonic acid

C39H74O12S (766.4900724)


   
   

10-{[3,4-dihydroxy-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-{[3,4-dihydroxy-5-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

1-[(1s,4r,5r,6r,8s,10s,12s,13s,15s,16r,18s,21r)-18-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-15-hydroxy-8-methoxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-methylpropan-1-one

1-[(1s,4r,5r,6r,8s,10s,12s,13s,15s,16r,18s,21r)-18-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-15-hydroxy-8-methoxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-yl]-2-methylpropan-1-one

C41H66O13 (766.4503186000001)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 8-(hydroxymethyl)-5a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 8-(hydroxymethyl)-5a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-9-[(3,4,5-trihydroxyoxan-2-yl)oxy]-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C41H66O13 (766.4503186000001)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2z)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2z)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

(2s)-1-[(3z,6z,9z,12z,15z)-octadeca-3,6,9,12,15-pentaenoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (3z,6z,9z,12z,15z)-octadeca-3,6,9,12,15-pentaenoate

(2s)-1-[(3z,6z,9z,12z,15z)-octadeca-3,6,9,12,15-pentaenoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (3z,6z,9z,12z,15z)-octadeca-3,6,9,12,15-pentaenoate

C45H66O10 (766.4655736000001)


   

5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[16-hydroxy-2,4,4,10,16-pentamethyl-17-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[16-hydroxy-2,4,4,10,16-pentamethyl-17-(2-methylprop-1-en-1-yl)-19,21-dioxahexacyclo[18.2.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0¹⁵,²⁰]tricosan-7-yl]oxy}-2-(hydroxymethyl)oxane-3,4-diol

C41H66O13 (766.4503186000001)


   

5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

5-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,4-dihydroxy-6-{[9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C41H66O13 (766.4503186000001)


   

10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(1r,2r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4as,6ar,6bs,8ar,9r,12ar,14as,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4s,4as,6ar,6bs,8ar,9r,12ar,14as,14br)-9-hydroxy-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-{[(2r,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-3,4-dihydroxyoxane-2-carboxylic acid

C41H66O13 (766.4503186000001)


   

(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-(hydroxymethyl)-2,6a,6b,9,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (2r,4ar,6as,6br,8ar,10s,12ar,12br,14bs)-2-(hydroxymethyl)-2,6a,6b,9,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4r,5r,6s)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2e)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2s,3r,4r,5r,6s)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2e)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

9-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5a-(hydroxymethyl)-5b,8,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-5a-(hydroxymethyl)-5b,8,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,5r,9ar,11s,11as)-6-ethyl-7,11-dihydroxy-3a,6,9a-trimethyl-1-[(2z)-6-methylhepta-2,5-dien-2-yl]-tetradecahydrocyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,5r,9ar,11s,11as)-6-ethyl-7,11-dihydroxy-3a,6,9a-trimethyl-1-[(2z)-6-methylhepta-2,5-dien-2-yl]-tetradecahydrocyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

3,4,5-trihydroxyoxan-2-yl 5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxyoxan-2-yl 5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

(4s,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4s,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4-hydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(3r,4r,5r,8s,9s,12r)-12-[(3s,6r,8s,9r)-3,9-dimethyl-8-[(3s)-3-methyl-4-oxopentyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-5,9-dihydroxy-4-methoxy-2,8-dimethyl-7-oxotridecan-3-yl (3r)-3-hydroxy-3-(4-methyl-2,5-dioxofuran-3-yl)propanoate

(3r,4r,5r,8s,9s,12r)-12-[(3s,6r,8s,9r)-3,9-dimethyl-8-[(3s)-3-methyl-4-oxopentyl]-1,7-dioxaspiro[5.5]undecan-2-yl]-5,9-dihydroxy-4-methoxy-2,8-dimethyl-7-oxotridecan-3-yl (3r)-3-hydroxy-3-(4-methyl-2,5-dioxofuran-3-yl)propanoate

C41H66O13 (766.4503186000001)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1s,2r,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C41H66O13 (766.4503186000001)


   

6-{[8,9-dihydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[8,9-dihydroxy-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-10-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H66O13 (766.4503186000001)


   

9-[(3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-8-(hydroxymethyl)-5a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-[(3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-8-(hydroxymethyl)-5a,5b,8,11a-tetramethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C41H66O13 (766.4503186000001)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

2-[(2-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(2-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-2,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

2-(hydroxymethyl)-6-{[4-methoxy-3a,6,6,9b,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}oxane-3,4,5-triol

2-(hydroxymethyl)-6-{[4-methoxy-3a,6,6,9b,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-7-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}oxane-3,4,5-triol

C42H70O12 (766.486702)


   

1-(octadeca-3,6,9,12,15-pentaenoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-3,6,9,12,15-pentaenoate

1-(octadeca-3,6,9,12,15-pentaenoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-3,6,9,12,15-pentaenoate

C45H66O10 (766.4655736000001)


   

2-[(2-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

2-[(2-{[7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5ar,5br,7as,9r,10r,11ar,11br,13ar,13br)-10-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5ar,5br,7as,9r,10r,11ar,11br,13ar,13br)-10-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

[(2s,3s,4s,5r,6s)-6-[(2s)-3-(hexadecanoyloxy)-2-(tetradecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2s,3s,4s,5r,6s)-6-[(2s)-3-(hexadecanoyloxy)-2-(tetradecanoyloxy)propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C39H74O12S (766.4900724)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3as,3br,4s,7s,9as,9bs,11ar)-4-methoxy-3a,6,6,9b,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3as,3br,4s,7s,9as,9bs,11ar)-4-methoxy-3a,6,6,9b,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,10h,11h-cyclopenta[a]phenanthren-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2e)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3r,4s,5s,6r)-2-{[(1s,3ar,3br,5s,5ar,7s,9ar,9br,11r,11ar)-7,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-1-[(2e)-6-methylhepta-2,5-dien-2-yl]-dodecahydro-1h-cyclopenta[a]phenanthren-5-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)