Chemical Formula: C42H70O12

Chemical Formula C42H70O12

Found 30 metabolite its formula value is C42H70O12

(20E)-Ginsenoside F4

2-[2-[[3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside F4 is found in tea. Ginsenoside F4 is isolated from ginseng.

   

Ginsenoside Rg5

2-{[4,5-dihydroxy-2-({16-hydroxy-2,6,6,10,11-pentamethyl-14-[(2Z)-6-methylhepta-2,5-dien-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl}oxy)-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg5 is found in tea. Ginsenoside Rg5 is isolated from ginsen Isolated from ginseng. Ginsenoside Rg5 is found in tea.

   

Ginsenoside Rg6

2-[2-[[3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg6 is found in tea. Ginsenoside Rg6 is isolated from ginseng. Isolated from ginseng. Ginsenoside Rg6 is found in tea. Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect. Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect.

   

Hebevinoside X

2-(hydroxymethyl)-6-{[9-methoxy-1,6,6,11,15-pentamethyl-14-(6-methylhept-5-en-2-yl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-13-yl]oxy}oxane-3,4,5-triol

C42H70O12 (766.486702)


Toxic constituent of the toxic mushroom Hebeloma vinosophyllum. Hebevinoside X is found in mushrooms. Hebevinoside X is found in mushrooms. Toxic constituent of the toxic mushroom Hebeloma vinosophyllu

   

ginsenoside Rk1

2-[(4,5-dihydroxy-2-{[16-hydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-1,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

Ginsenoside Rg6

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg6 is a triterpenoid. Ginsenoside Rg6 is a natural product found in Panax ginseng with data available. Annotation level-1 Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect. Ginsenoside Rg6 inhibits TNF-α-induced NF-κB transcriptional activity with an IC50 of 29.34 μM in HepG2 cells. Ginsenoside Rg6 also exhibits apoptosis-inducing effect.

   

Ginsenoside Rg5

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


Ginsenoside Rg5 is a triterpenoid saponin. It has a role as a metabolite. Ginsenoside Rg5 is a natural product found in Panax notoginseng and Centella asiatica with data available. A natural product found in Panax japonicus var. major. Annotation level-1 Ginsenoside Rg5 is the main component of Red ginseng. Ginsenoside blocks binding of IGF-1 to its receptor with an IC50 of ~90 nM. Ginsenoside Rg5 also inhibits the mRNA expression of COX-2 via suppression of the DNA binding activities of NF-κB p65. Ginsenoside Rg5 is the main component of Red ginseng. Ginsenoside blocks binding of IGF-1 to its receptor with an IC50 of ~90 nM. Ginsenoside Rg5 also inhibits the mRNA expression of COX-2 via suppression of the DNA binding activities of NF-κB p65.

   

Gisenoside Rk1

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


ginsenoside Rk1 is a natural product found in Panax ginseng, Panax notoginseng, and Centella asiatica with data available. Ginsenoside Rk1 is a unique component created by processing the ginseng plant (mainly Sung Ginseng, SG) at high temperatures[1]. Ginsenoside Rk1 has anti-inflammatory effect, suppresses the activation of Jak2/Stat3 signaling pathway and NF-κB[2]. Ginsenoside Rk1 has anti-tumor effect, antiplatelet aggregation activities, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis[1]. Ginsenoside Rk1 induces cell apoptosis by triggering intracellular reactive oxygen species (ROS) generation and blocking PI3K/Akt pathway[3].

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


ginsenoside Rk1 is a natural product found in Panax ginseng, Panax notoginseng, and Centella asiatica with data available. Ginsenoside Rk1 is a unique component created by processing the ginseng plant (mainly Sung Ginseng, SG) at high temperatures[1]. Ginsenoside Rk1 has anti-inflammatory effect, suppresses the activation of Jak2/Stat3 signaling pathway and NF-κB[2]. Ginsenoside Rk1 has anti-tumor effect, antiplatelet aggregation activities, anti-insulin resistance, nephroprotective effect, antimicrobial effect, cognitive function enhancement, lipid accumulation reduction and prevents osteoporosis[1]. Ginsenoside Rk1 induces cell apoptosis by triggering intracellular reactive oxygen species (ROS) generation and blocking PI3K/Akt pathway[3].

   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   
   
   

20-(E)-ginsenoside F4

20-(E)-ginsenoside F4

C42H70O12 (766.486702)


   

5-Hydroxy-Salinomycin,BAN,INN

5-Hydroxy-Salinomycin,BAN,INN

C42H70O12 (766.486702)


   
   
   

30-acetyl nigericin

30-acetyl nigericin

C42H70O12 (766.486702)


   
   

C42H70O12_(3beta,6alpha,9xi,12beta,20Z)-3,12-Dihydroxydammara-20(22),24-dien-6-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside

NCGC00384601-01_C42H70O12_(3beta,6alpha,9xi,12beta,20Z)-3,12-Dihydroxydammara-20(22),24-dien-6-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside

C42H70O12 (766.486702)


   

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol_major

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol_major

C42H70O12 (766.486702)


   

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,?.0¹¹,¹?]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-{[(2R,3R,4S,5S,6R)-2-{[(2R,5S,7R,8S,10R,11R,14S,15R,16R)-5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-(6-methylhepta-2,5-dien-2-yl)tetracyclo[8.7.0.0²,?.0¹¹,¹?]heptadecan-8-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

g-RG5

2-{[4,5-dihydroxy-2-({16-hydroxy-2,6,6,10,11-pentamethyl-14-[(2Z)-6-methylhepta-2,5-dien-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-yl}oxy)-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(20E)-Ginsenoside F4

2-{[2-({5,16-dihydroxy-2,6,6,10,11-pentamethyl-14-[(2E)-6-methylhepta-2,5-dien-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-8-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)


   

Hebevinoside X

2-(hydroxymethyl)-6-{[9-methoxy-1,6,6,11,15-pentamethyl-14-(6-methylhept-5-en-2-yl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-13-yl]oxy}oxane-3,4,5-triol

C42H70O12 (766.486702)


   

ginsenoside F4

ginsenoside Rg4

C42H70O12 (766.486702)


Isolated from ginseng. Ginsenoside F4 is found in tea.

   

(2R,3S,4R,5R,6R)-2-(hydroxymethyl)-6-[[(7R,9S,10R,13R,14S,16S)-7-methoxy-4,4,9,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-16-yl]oxy]oxane-3,4,5-triol

(2R,3S,4R,5R,6R)-2-(hydroxymethyl)-6-[[(7R,9S,10R,13R,14S,16S)-7-methoxy-4,4,9,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-3-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy-2,3,7,8,10,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-16-yl]oxy]oxane-3,4,5-triol

C42H70O12 (766.486702)


   

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-[[12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-[[12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H70O12 (766.486702)


   

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-[(2E)-6-methylhepta-2,5-dien-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C42H70O12 (766.486702)