Exact Mass: 365.2103162

Exact Mass Matches: 365.2103162

Found 330 metabolites which its exact mass value is equals to given mass value 365.2103162, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Senkirkin

Senkirkine

C19H27NO6 (365.1838282)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 178 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 168 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 158 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 148 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 138 INTERNAL_ID 138; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 128 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 118 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 108 INTERNAL_ID 2283; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2283

   

Trimethaphan

3,5-dibenzyl-4-oxo-8λ⁴-thia-3,5-diazatricyclo[6.3.0.0²,⁶]undecan-8-ylium

C22H25N2OS+ (365.16875)


Trimethaphan is only found in individuals that have used or taken this drug. It is a nicotinic antagonist that has been used as a ganglionic blocker in hypertension, as an adjunct to anesthesia, and to induce hypotension during surgery. [PubChem]Trimethaphan is a ganglionic blocking agent prevents stimulation of postsynaptic receptors by competing with acetylcholine for these receptor sites. Additional effects may include direct peripheral vasodilation and release of histamine. Trimethaphans hypotensive effect is due to reduction in sympathetic tone and vasodilation, and is primarily postural. C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents

   
   

Angiotensin (5-7)

Angiotensin (5-7); Angiotensin-(5-7)

C17H27N5O4 (365.2062942)


   

Brevianamide B

4,4-dimethyl-1,3-dihydro-9,14-diazaspiro[indole-2,5-tetracyclo[5.5.2.0¹,⁹.0³,⁷]tetradecane]-3,8,13-trione

C21H23N3O3 (365.1739328)


Brevianamide A is a mycotoxin from Penicillium brevi-compactum and some other Penicillium specie

   

Aegle marmelos Alkaloid C

(2Z)-N-(2-Methoxy-2-{4-[(3-methylbut-2-en-1-yl)oxy]phenyl}ethyl)-3-phenylprop-2-enimidate

C23H27NO3 (365.1990832)


Aegle marmelos Alkaloid C is found in fruits. Aegle marmelos Alkaloid C is an alkaloid from leaves of Aegle marmelos (bael). Alkaloid from leaves of Aegle marmelos (bael). Aegle marmelos Alkaloid C is found in fruits.

   

Isopentenyladenine-9-N-glucoside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{6-[(3-methylbut-2-en-1-yl)amino]-9H-purin-9-yl}oxane-3,4,5-triol

C16H23N5O5 (365.1699108)


Isopentenyladenine-9-N-glucoside belongs to the class of organic compounds known as glycosylamines. Glycosylamines are compounds consisting of an amine with a beta-N-glycosidic bond to a carbohydrate, thus forming a cyclic hemiaminal ether bond (alpha-amino ether). Isopentenyladenine-9-N-glucoside is a strong basic compound (based on its pKa). Isopentenyladenine-9-N-glucoside is produced when isopentenyladenine and UDP-D-glucose react, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferases. Isopentenyladenine-9-N-glucoside is produced when isopentenyladenine and UDP-D-glucose react, with UDP as a byproduct. The reaction is catalyzed by UDP glycosyltransferases. [HMDB]

   

5-O-Desmethyldonepezil

2-[(1-benzylpiperidin-4-yl)methyl]-5-hydroxy-6-methoxy-2,3-dihydro-1H-inden-1-one

C23H27NO3 (365.1990832)


5-O-Desmethyldonepezil is only found in individuals that have used or taken Donepezil. 5-O-Desmethyldonepezil is a metabolite of Donepezil. 5-o-desmethyldonepezil belongs to the family of Indanones. These are compounds containing an indane ring bearing a ketone group.

   

6-O-Desmethyldonepezil

2-[(1-benzylpiperidin-4-yl)methyl]-6-hydroxy-5-methoxy-2,3-dihydro-1H-inden-1-one

C23H27NO3 (365.1990832)


6-O-Desmethyldonepezil is only found in individuals that have used or taken Donepezil. 6-O-Desmethyldonepezil is a metabolite of Donepezil. 6-o-desmethyldonepezil belongs to the family of Indanones. These are compounds containing an indane ring bearing a ketone group.

   

Nequinate

Methyl 6-butyl-1,4-dihydro-4-oxo-7-(phenylmethoxy)-3-quinolinecarboxylate, 9ci

C22H23NO4 (365.16269980000004)


C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent Antiprotozoan; used as a coccidiostat for poultry and rabbit

   

Tetradeca-7,9,11-trienoylcarnitine

3-(tetradeca-7,9,11-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-7,9,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-7,9,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-7,9,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-7,9,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-3,5,7-trienoylcarnitine

3-(tetradeca-3,5,7-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-3,5,7-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-3,5,7-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-3,5,7-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-3,5,7-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-8,10,12-trienoylcarnitine

3-(tetradeca-8,10,12-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-8,10,12-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-8,10,12-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-8,10,12-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-8,10,12-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-4,7,10-trienoylcarnitine

3-(tetradeca-4,7,10-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-4,7,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-4,7,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-4,7,10-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-4,7,10-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-4,6,8-trienoylcarnitine

3-(tetradeca-4,6,8-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-4,6,8-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-4,6,8-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-4,6,8-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-4,6,8-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-6,9,12-trienoylcarnitine

3-(tetradeca-6,9,12-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-6,9,12-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-6,9,12-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-6,9,12-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-6,9,12-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-5,7,9-trienoylcarnitine

3-(tetradeca-5,7,9-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-5,7,9-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-5,7,9-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-5,7,9-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-5,7,9-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-5,8,11-trienoylcarnitine

3-(tetradeca-5,8,11-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-5,8,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-5,8,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-5,8,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-5,8,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-2,5,8-trienoylcarnitine

3-(tetradeca-2,5,8-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-2,5,8-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-2,5,8-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-2,5,8-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-2,5,8-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-6,8,10-trienoylcarnitine

3-(tetradeca-6,8,10-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-6,8,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-6,8,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-6,8,10-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-6,8,10-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine

3-(tetradeca-4,10,12-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4Z,10Z,12E)-tetradeca-4,10,12-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-3,6,9-trienoylcarnitine

3-(tetradeca-3,6,9-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-3,6,9-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-3,6,9-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-3,6,9-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-3,6,9-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Tetradeca-2,4,6-trienoylcarnitine

3-(tetradeca-2,4,6-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C21H35NO4 (365.25659500000006)


Tetradeca-2,4,6-trienoylcarnitine is an acylcarnitine. More specifically, it is an tetradeca-2,4,6-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Tetradeca-2,4,6-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Tetradeca-2,4,6-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Arachidonyl-2-chloroethylamide

N-(2-chloroethyl)icosa-5,8,11,14-tetraenamide

C22H36ClNO (365.24852760000005)


   

Caroverine

1-[2-(diethylamino)ethyl]-3-[(4-methoxyphenyl)methyl]-1,2-dihydroquinoxalin-2-one

C22H27N3O2 (365.2103162)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Florbenazine

9-(3-fluoropropoxy)-10-methoxy-3-(2-methylpropyl)-1H,2H,3H,4H,6H,7H,11bH-pyrido[2,1-a]isoquinolin-2-ol

C21H32FNO3 (365.2366094)


   

2-Chloro-N-icosa-5,8,11,14-tetraenylacetamide

2-Chloro-N-(icosa-5,8,11,14-tetraen-1-yl)ethanimidate

C22H36ClNO (365.24852760000005)


   

Timegadine

N-cyclohexyl-N-(2-methylquinolin-4-yl)-N-(1,3-thiazol-2-yl)guanidine

C20H23N5S (365.16740780000003)


   
   
   
   
   
   
   

12,13-Dihydroaustamide

12,13-Dihydroaustamide

C21H23N3O3 (365.1739328)


   

13-dehydroxycyclotryprostatin C

13-dehydroxycyclotryprostatin C

C21H23N3O3 (365.1739328)


   

APINACA

1-Pentyl-N-tricyclo[3.3.1.1(3,7)]dec-1-yl-1H-indazole-3-carboxamide

C23H31N3O (365.2466996)


   
   
   

Nafadotride

Nafadotride

C22H27N3O2 (365.2103162)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists

   

N6-isopentenyladenine-9-glucoside (iP9G)

N6-isopentenyladenine-9-glucoside (iP9G)

C16H23N5O5 (365.1699108)


   

N6-isopentenyladenine-7-glucoside (iP7G)

N6-isopentenyladenine-7-glucoside (iP7G)

C16H23N5O5 (365.1699108)


   
   
   
   

2-(3,4-Diguanidinobutanoylamino)-3-(4-hydroxyphenyl)propionic acid

2-(3,4-Diguanidinobutanoylamino)-3-(4-hydroxyphenyl)propionic acid

C15H23N7O4 (365.18114380000003)


   
   
   
   

3alpha-(O-methylitaconyl)-6beta-angeloyloxytropane|Schizanthine G

3alpha-(O-methylitaconyl)-6beta-angeloyloxytropane|Schizanthine G

C19H27NO6 (365.1838282)


   

Antibiotic KF 77AG6|B,HCl-Antibiotic KF 77AG6

Antibiotic KF 77AG6|B,HCl-Antibiotic KF 77AG6

C16H23N5O5 (365.1699108)


   
   
   

1-methylzeatine riboside|6-(4-hydroxy-1,3-dimethylbut-trans-2-enylamino)-9-beta-D-ribofuranosylpurine

1-methylzeatine riboside|6-(4-hydroxy-1,3-dimethylbut-trans-2-enylamino)-9-beta-D-ribofuranosylpurine

C16H23N5O5 (365.1699108)


   
   
   

6-(4-Methoxyphenyl)-7-(3,4-dimethoxyphenyl)-1,2,3,5,8,8a-hexahydroindolizine

6-(4-Methoxyphenyl)-7-(3,4-dimethoxyphenyl)-1,2,3,5,8,8a-hexahydroindolizine

C23H27NO3 (365.1990832)


   

Oxime-(3alpha,5alpha,20S)-3,20,21-Trihydroxypregnan-11-one

Oxime-(3alpha,5alpha,20S)-3,20,21-Trihydroxypregnan-11-one

C21H35NO4 (365.25659500000006)


   
   

6-hydroxy-5,6-seco-stemocurtisine

6-hydroxy-5,6-seco-stemocurtisine

C19H27NO6 (365.1838282)


   
   

11alpha-hydroxyacetylfawcettiine

11alpha-hydroxyacetylfawcettiine

C20H31NO5 (365.2202116)


   

Demethoxy-12beta-Fumitremorgin C

Demethoxy-12beta-Fumitremorgin C

C21H23N3O3 (365.1739328)


   
   
   

5alpha,12-dihydroxy-1-tremulen-11-yl 2(S)-pyroglutamate

5alpha,12-dihydroxy-1-tremulen-11-yl 2(S)-pyroglutamate

C20H31NO5 (365.2202116)


   
   

(3Z)-8a-hydroxy-3-{[2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl]methylidene}hexahydropyrrolo[1,2-a]pyrazine-1,4-dione|brevianamide Q

(3Z)-8a-hydroxy-3-{[2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl]methylidene}hexahydropyrrolo[1,2-a]pyrazine-1,4-dione|brevianamide Q

C21H23N3O3 (365.1739328)


   

3alpha-(O-methylitaconyl)-6beta-senecioyloxytropane

3alpha-(O-methylitaconyl)-6beta-senecioyloxytropane

C19H27NO6 (365.1838282)


   

3alpha-(O-methylmesaconyl)-6beta-senecioyloxytropane

3alpha-(O-methylmesaconyl)-6beta-senecioyloxytropane

C19H27NO6 (365.1838282)


   
   
   
   
   
   
   
   

N-(2-chloroethyl)icosa-5,8,11,14-tetraenamide

N-(2-chloroethyl)icosa-5,8,11,14-tetraenamide

C22H36ClNO (365.24852760000005)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Renardin

2,9-DIOXA-14-AZABICYCLO(9.5.1)HEPTADEC-11-ENE-3,8,17-TRIONE, 4-ETHYLIDENE-7-HYDROXY-6,7,14-TRIMETHYL-, (1R,4Z,6R,7R)-

C19H27NO6 (365.1838282)


Senkirkine is a macrolide. Senkirkine is a natural product found in Tussilago farfara, Senecio gallicus, and other organisms with data available. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of).

   

Isopentenyl-Adenine-9-glucoside

Isopentenyl-Adenine-9-glucoside

C16H23N5O5 (365.1699108)


Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

Isopentenyl-Adenine-7-glucoside

Isopentenyl-Adenine-7-glucoside

C16H23N5O5 (365.1699108)


Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

isopentenyl-Adenine-7-glucoside-[d6]

isopentenyl-Adenine-7-glucoside-[d6]

C16H23N5O5 (365.1699108)


Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

isopentenyl-Adenine-9-glucoside-[d6]

isopentenyl-Adenine-9-glucoside-[d6]

C16H23N5O5 (365.1699108)


Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

N6-Isopentenyladenine-7-glucoside

N6-Isopentenyladenine-7-glucoside

C16H23N5O5 (365.1699108)


   

N6-Isopentenyladenine-9-glucoside

N6-Isopentenyladenine-9-glucoside

C16H23N5O5 (365.1699108)


   

Brevianamide A

Brevianamide A

C21H23N3O3 (365.1739328)


CONFIDENCE isolated standard

   
   

(S)-3-((6-hydroxy-2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)methyl)-2,3,6,7-tetrahydropyrrolo[1,2-a]pyrazine-1,4-dione

(S)-3-((6-hydroxy-2-(2-methylbut-3-en-2-yl)-1H-indol-3-yl)methyl)-2,3,6,7-tetrahydropyrrolo[1,2-a]pyrazine-1,4-dione

C21H23N3O3 (365.1739328)


   

Sphingosine-1-P (C17 base)

Sphingosine-1-P (C17 base)

C17H36NO5P (365.2330976)


   

Sphingosine-1-Phosphate (C17 base)

Sphingosine-1-Phosphate (C17 base)

C17H36NO5P (365.2330976)


   

C17 Sphingosine-1-phosphate

(2S,3R,4E)-2-aminoheptadec-4-ene-1,3-diol-1-phosphate

C17H36NO5P (365.2330976)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-chloro-AEA

N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide

C22H36ClNO (365.24852760000005)


   

AKB48

1-Pentyl-N-tricyclo[3.3.1.1(3,7)]dec-1-yl-1H-indazole-3-carboxamide

C23H31N3O (365.2466996)


   

JWH 250 N-(5-carboxyxypentyl) metabolite

JWH 250 N-(5-carboxyxypentyl) metabolite

C22H23NO4 (365.16269980000004)


   

5-O-Desmethyldonepezil

2-[(1-benzylpiperidin-4-yl)methyl]-5-hydroxy-6-methoxy-2,3-dihydro-1H-inden-1-one

C23H27NO3 (365.1990832)


A member of the class of piperidines that is donepezil in which the 5-methoxy group has been demethylated to the corresponding hydroxy derivative. It is metabolite of donepezil, a drug used in the treatment of dementia.

   

6-O-Desmethyldonepezil

2-[(1-benzylpiperidin-4-yl)methyl]-6-hydroxy-5-methoxy-2,3-dihydro-1H-inden-1-one

C23H27NO3 (365.1990832)


   

Brevianamide B

4,4-dimethyl-1,3-dihydro-9,14-diazaspiro[indole-2,5-tetracyclo[5.5.2.0^{1,9}.0^{3,7}]tetradecane]-3,8,13-trione

C21H23N3O3 (365.1739328)


   

Statyl

Methyl 6-butyl-1,4-dihydro-4-oxo-7-(phenylmethoxy)-3-quinolinecarboxylate, 9ci

C22H23NO4 (365.16269980000004)


C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Aegle marmelos Alkaloid C

(2Z)-N-(2-methoxy-2-{4-[(3-methylbut-2-en-1-yl)oxy]phenyl}ethyl)-3-phenylprop-2-enamide

C23H27NO3 (365.1990832)


   

SPBP 17:1;O2

(2S,3R,4E)-2-aminoheptadec-4-ene-1,3-diol-1-phosphate

C17H36NO5P (365.2330976)


   

4-(N,N-DIBOC-AMINOMETHYL)-N-HYDROXYBENZAMIDINE

4-(N,N-DIBOC-AMINOMETHYL)-N-HYDROXYBENZAMIDINE

C18H27N3O5 (365.1950612)


   

ALUMINUM CALCIUM ISOPROPOXIDE

ALUMINUM CALCIUM ISOPROPOXIDE

C15H38AlCaO5 (365.2160418)


   

1-(Dimethylamino)-3-(2-(3-methoxyphenethyl)phenoxy)propan-2-ol hydrochloride

1-(Dimethylamino)-3-(2-(3-methoxyphenethyl)phenoxy)propan-2-ol hydrochloride

C20H28ClNO3 (365.17576080000003)


   

Basic Violet 2

Basic Violet 2

C22H24ClN3 (365.16586540000003)


D004396 - Coloring Agents > D012394 - Rosaniline Dyes

   

potassium,dodecane-1-thiol,prop-2-enenitrile,prop-2-enoate

potassium,dodecane-1-thiol,prop-2-enenitrile,prop-2-enoate

C18H32KNO2S (365.1790712)


   

Timegadine

Timegadine

C20H23N5S (365.16740780000003)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic

   

5-O-Desmethyl Donepezil

5-O-Desmethyl Donepezil

C23H27NO3 (365.1990832)


   
   

3-N-BOC-AMINO-1-[2-AMINO-1-(2,5-DIMETHOXY-PHENYL)-ETHYL]-PYRROLIDINE

3-N-BOC-AMINO-1-[2-AMINO-1-(2,5-DIMETHOXY-PHENYL)-ETHYL]-PYRROLIDINE

C19H31N3O4 (365.23144460000003)


   

3-N-BOC-AMINO-1-[2-AMINO-1-(3,4-DIMETHOXY-PHENYL)-ETHYL]-PYRROLIDINE

3-N-BOC-AMINO-1-[2-AMINO-1-(3,4-DIMETHOXY-PHENYL)-ETHYL]-PYRROLIDINE

C19H31N3O4 (365.23144460000003)


   
   

tert-butyl 1-(4-(2-phenylacetyl)phenyl)cyclobutylcarbamate

tert-butyl 1-(4-(2-phenylacetyl)phenyl)cyclobutylcarbamate

C23H27NO3 (365.1990832)


   

2-[bis(2-hydroxyethyl)amino]ethanol,2-butoxyethanol,phosphoric acid

2-[bis(2-hydroxyethyl)amino]ethanol,2-butoxyethanol,phosphoric acid

C12H32NO9P (365.1814592)


   
   

ALD-52

1-Acetyllysergic acid diethylamide

C22H27N3O2 (365.2103162)


   
   

Urea, N-[2-[(3-cyano-6,8-dimethyl-2-quinolinyl)amino]ethyl]-N-cyclohexyl- (9CI)

Urea, N-[2-[(3-cyano-6,8-dimethyl-2-quinolinyl)amino]ethyl]-N-cyclohexyl- (9CI)

C21H27N5O (365.2215492)


   
   

A 77636 hydrochloride

A 77636 hydrochloride

C20H28ClNO3 (365.17576080000003)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists A-77636 hydrochloride is a potent, orally active, selective and long acting dopamine D1 receptor agonist (pKi=7.40; Ki=39.8 nM) with antiparkinsonian activity. A-77636 hydrochloride is functionally inactive at dopamine D2 receptor[1][2].

   

(1S,2R)-1-[(3,5-DI-TERT-BUTYL-2-HYDROXYBENZYLIDENE)AMINO]-2-INDANOL

(1S,2R)-1-[(3,5-DI-TERT-BUTYL-2-HYDROXYBENZYLIDENE)AMINO]-2-INDANOL

C24H31NO2 (365.2354666)


   
   

(s)-tert-butyl 1-(tert-butyldimethylsilyloxy)-3-phenylpropan-2-ylcarbamate

(s)-tert-butyl 1-(tert-butyldimethylsilyloxy)-3-phenylpropan-2-ylcarbamate

C20H35NO3Si (365.23860800000006)


   
   
   

Micafungin Side Chain Methyl Ester

Micafungin Side Chain Methyl Ester

C22H23NO4 (365.16269980000004)


   

(1R,2S)-2-[N-BENZYL-N-(MESITYLENESULFONYL)AMINO]-1-PHENYL-1-PROPANOL

(1R,2S)-2-[N-BENZYL-N-(MESITYLENESULFONYL)AMINO]-1-PHENYL-1-PROPANOL

C22H23NO4 (365.16269980000004)


   

(1S,2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)cyclohexane-1-carboxylic acid

(1S,2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)cyclohexane-1-carboxylic acid

C22H23NO4 (365.16269980000004)


   

(1S,2R)-2-[N-BENZYL-N-(MESITYLENESULFONYL)AMINO]-1-PHENYL-1-PROPANOL

(1S,2R)-2-[N-BENZYL-N-(MESITYLENESULFONYL)AMINO]-1-PHENYL-1-PROPANOL

C22H23NO4 (365.16269980000004)


   
   
   

(3R,4R,5S)-4-(4-HYDROXYPHENYL)-5-((TRIISOPROPYLSILYL)OXY)PIPERIDIN-3-OL

(3R,4R,5S)-4-(4-HYDROXYPHENYL)-5-((TRIISOPROPYLSILYL)OXY)PIPERIDIN-3-OL

C20H35NO3Si (365.23860800000006)


   

2-[1-(9H-fluoren-9-ylmethoxycarbonylamino)cyclopentyl]acetic acid

2-[1-(9H-fluoren-9-ylmethoxycarbonylamino)cyclopentyl]acetic acid

C22H23NO4 (365.16269980000004)


   

3-Fluoro-4-cyanophenyl trans-4-(4-n-propylcyclohexyl)-benzoate

3-Fluoro-4-cyanophenyl trans-4-(4-n-propylcyclohexyl)-benzoate

C23H24FNO2 (365.1790976)


   
   

Boc-NH-PEG4-CH2CH2COOH

Boc-NH-PEG4-CH2CH2COOH

C16H31NO8 (365.2049566)


   
   
   
   

3-[4-(Hexyloxy)phenyl]-3-({[(2-methyl-2-propanyl)oxy]carbonyl}ami no)propanoic acid

3-[4-(Hexyloxy)phenyl]-3-({[(2-methyl-2-propanyl)oxy]carbonyl}ami no)propanoic acid

C20H31NO5 (365.2202116)


   

(1R,2R)-FMOC-2-AMINOCYCLOHEXANE CARBOXYLIC ACID

(1R,2R)-FMOC-2-AMINOCYCLOHEXANE CARBOXYLIC ACID

C22H23NO4 (365.16269980000004)


   

1-(4-[PHENYLAZO]PHENYLAZO)-2-METHYLAMINONAPHTHALENE

1-(4-[PHENYLAZO]PHENYLAZO)-2-METHYLAMINONAPHTHALENE

C23H19N5 (365.16403740000004)


   

METHYL4-((5,5,8,8-TETRAMETHYL-5,6,7,8-TETRAHYDRONAPHTHALEN-2-YL)CARBAMOYL)BENZOATE

METHYL4-((5,5,8,8-TETRAMETHYL-5,6,7,8-TETRAHYDRONAPHTHALEN-2-YL)CARBAMOYL)BENZOATE

C23H27NO3 (365.1990832)


   

(1R,2S)-1-[(3,5-DI-TERT-BUTYL-2-HYDROXYBENZYLIDENE)AMINO]-2-INDANOL

(1R,2S)-1-[(3,5-DI-TERT-BUTYL-2-HYDROXYBENZYLIDENE)AMINO]-2-INDANOL

C24H31NO2 (365.2354666)


   

[4-[2-(diethylamino)ethoxy]phenyl]-(2-ethyl-1-benzofuran-3-yl)methanone

[4-[2-(diethylamino)ethoxy]phenyl]-(2-ethyl-1-benzofuran-3-yl)methanone

C23H27NO3 (365.1990832)


   

1-O-tert-butyl 4-O-ethyl 4-[(4-fluorophenyl)methyl]piperidine-1,4-dicarboxylate

1-O-tert-butyl 4-O-ethyl 4-[(4-fluorophenyl)methyl]piperidine-1,4-dicarboxylate

C20H28FNO4 (365.20022600000004)


   

1,3,3-trimethyl-2-[[methyl(p-tolyl)hydrazono]methyl]-3H-indolium acetate

1,3,3-trimethyl-2-[[methyl(p-tolyl)hydrazono]methyl]-3H-indolium acetate

C22H27N3O2 (365.2103162)


   

1-(Fmoc-amino)cyclohexanecarboxylic acid

1-(Fmoc-amino)cyclohexanecarboxylic acid

C22H23NO4 (365.16269980000004)


   
   

bis-(Methyldiethoxysilylpropyl)amine

bis-(Methyldiethoxysilylpropyl)amine

C16H39NO4Si2 (365.2417494)


   
   

(αS)-α-[[(1R)-2-Hydroxy-1-phenylethyl]aMino]-tricyclo[3.3.1.1(3,7)]decane-1-acetic acid hydrochloride

(αS)-α-[[(1R)-2-Hydroxy-1-phenylethyl]aMino]-tricyclo[3.3.1.1(3,7)]decane-1-acetic acid hydrochloride

C20H28ClNO3 (365.17576080000003)


   

{3-[2-(Dimethylamino)ethyl]-5-[(pyrrolidine-1-yl)sulfonylmethyl]-1H-indol-1-yl}Methanol

{3-[2-(Dimethylamino)ethyl]-5-[(pyrrolidine-1-yl)sulfonylmethyl]-1H-indol-1-yl}Methanol

C18H27N3O3S (365.1773032)


   
   

(2R,4S)-4-([1,1-Biphenyl]-4-ylmethyl)-2-methyl-4-(2,5-dioxopyrrolidin-1-yl)butanoic acid

(2R,4S)-4-([1,1-Biphenyl]-4-ylmethyl)-2-methyl-4-(2,5-dioxopyrrolidin-1-yl)butanoic acid

C22H23NO4 (365.16269980000004)


   

3-fmoc-amino-cyclohexanecarboxylic acid

3-fmoc-amino-cyclohexanecarboxylic acid

C22H23NO4 (365.16269980000004)


   

(1S,2R)-FMOC-2-AMINOCYCLOHEXANE CARBOXYLIC ACID

(1S,2R)-FMOC-2-AMINOCYCLOHEXANE CARBOXYLIC ACID

C22H23NO4 (365.16269980000004)


   

2-Methoxy-5-[[[(1S)-1-(5-phenyl-1H-imidazol-2-yl)ethyl]amino]methyl]benzoic acid methyl ester

2-Methoxy-5-[[[(1S)-1-(5-phenyl-1H-imidazol-2-yl)ethyl]amino]methyl]benzoic acid methyl ester

C21H23N3O3 (365.1739328)


   
   

(R)-2-(1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidin-2-yl)

(R)-2-(1-(((9H-Fluoren-9-yl)methoxy)carbonyl)piperidin-2-yl)

C22H23NO4 (365.16269980000004)


   

(R)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-cyclobutyl

(R)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-cyclobutyl

C22H23NO4 (365.16269980000004)


   
   

5,6-bis[4-(dimethylamino)phenyl]-2-methyl-1,2,4-triazine-3-thione

5,6-bis[4-(dimethylamino)phenyl]-2-methyl-1,2,4-triazine-3-thione

C20H23N5S (365.16740780000003)


   
   

Florbenazine (18F)

Florbenazine (18F)

C21H32FNO3 (365.2366094)


C1446 - Radiopharmaceutical Compound > C2124 - Radioconjugate

   
   

N-bis(N-methylanilino)phosphoryl-N-methylaniline

N-bis(N-methylanilino)phosphoryl-N-methylaniline

C21H24N3OP (365.1656904)


   

4-[(E)-(5-Piperidin-1-ylfuran-2-yl)methylideneamino]spiro[4-azatricyclo[5.2.1.02,6]dec-8-ene-10,1-cyclopropane]-3,5-dione

4-[(E)-(5-Piperidin-1-ylfuran-2-yl)methylideneamino]spiro[4-azatricyclo[5.2.1.02,6]dec-8-ene-10,1-cyclopropane]-3,5-dione

C21H23N3O3 (365.1739328)


   

5-[2-(1-Azepanyl)-2-oxoethyl]-1-(4-methylphenyl)-4-pyrazolo[3,4-d]pyrimidinone

5-[2-(1-Azepanyl)-2-oxoethyl]-1-(4-methylphenyl)-4-pyrazolo[3,4-d]pyrimidinone

C20H23N5O2 (365.1851658)


   

1-[[4-(2,4,6-Trimethylphenyl)-1-piperazinyl]sulfonyl]azepane

1-[[4-(2,4,6-Trimethylphenyl)-1-piperazinyl]sulfonyl]azepane

C19H31N3O2S (365.2136866)


   

2-methyl-N-[2-[1-[2-(4-methylphenoxy)ethyl]-2-benzimidazolyl]ethyl]propanamide

2-methyl-N-[2-[1-[2-(4-methylphenoxy)ethyl]-2-benzimidazolyl]ethyl]propanamide

C22H27N3O2 (365.2103162)


   
   
   

JWH 250 N-pentanoic acid metabolite

JWH 250 N-pentanoic acid metabolite

C22H23NO4 (365.16269980000004)


   
   

2-{4-[(4-imidazo[1,2-a]pyridin-3-ylpyrimidin-2-yl)amino]piperidin-1-yl}-N-methylacetamide

2-{4-[(4-imidazo[1,2-a]pyridin-3-ylpyrimidin-2-yl)amino]piperidin-1-yl}-N-methylacetamide

C19H23N7O (365.1963988)


   

D-Phenylalanyl-N-(3-Methylbenzyl)-L-Prolinamide

D-Phenylalanyl-N-(3-Methylbenzyl)-L-Prolinamide

C22H27N3O2 (365.2103162)


   

HG9A-9, Nonanoyl-N-hydroxyethylglucamide

HG9A-9, Nonanoyl-N-hydroxyethylglucamide

C17H35NO7 (365.24134000000004)


   

Caroverine

1-[2-(diethylamino)ethyl]-3-[(4-methoxyphenyl)methyl]quinoxalin-2-one

C22H27N3O2 (365.2103162)


A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

3-cyclohexyl-N-{3-[5-(furan-2-yl)-1,3,4-oxadiazol-2-yl]phenyl}propanamide

3-cyclohexyl-N-{3-[5-(furan-2-yl)-1,3,4-oxadiazol-2-yl]phenyl}propanamide

C21H23N3O3 (365.1739328)


   

2-(5-Chloro-2-morpholin-4-ylanilino)-1-(3-methylpiperidin-1-yl)propan-1-one

2-(5-Chloro-2-morpholin-4-ylanilino)-1-(3-methylpiperidin-1-yl)propan-1-one

C19H28ClN3O2 (365.18699380000004)


   

Isopentenyladenine-9-N-glucoside

Isopentenyladenine-9-N-glucoside

C16H23N5O5 (365.1699108)


   

7-(alpha-D-glucosyl)-N(6)-isopentenyladenine

7-(alpha-D-glucosyl)-N(6)-isopentenyladenine

C16H23N5O5 (365.1699108)


A glucosyl-N(6)-isopentenyladenine in which the glucosyl moiety is in the pyranose form, has alpha-D-configuration and is located at position N-7.

   

(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-[hydroxy(methyl)phosphoryl]butanoyl]amino]propanoyl]amino]-4-methylpentanoic acid

(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-[hydroxy(methyl)phosphoryl]butanoyl]amino]propanoyl]amino]-4-methylpentanoic acid

C14H28N3O6P (365.1715638)


   

(2S,9S)-10,10-dimethylspiro[1H-indole-2,11-3,13-diazatetracyclo[5.5.2.01,9.03,7]tetradecane]-2,3,14-trione

(2S,9S)-10,10-dimethylspiro[1H-indole-2,11-3,13-diazatetracyclo[5.5.2.01,9.03,7]tetradecane]-2,3,14-trione

C21H23N3O3 (365.1739328)


   

2-Chloro-N-icosa-5,8,11,14-tetraenylacetamide

2-Chloro-N-icosa-5,8,11,14-tetraenylacetamide

C22H36ClNO (365.24852760000005)


   

Arachidonyl-2-(chloroethyl-d4)amide

Arachidonyl-2-(chloroethyl-d4)amide

C22H36ClNO (365.24852760000005)


   

Tetradeca-3,5,7-trienoylcarnitine

Tetradeca-3,5,7-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-4,6,8-trienoylcarnitine

Tetradeca-4,6,8-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-5,7,9-trienoylcarnitine

Tetradeca-5,7,9-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-2,5,8-trienoylcarnitine

Tetradeca-2,5,8-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-3,6,9-trienoylcarnitine

Tetradeca-3,6,9-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-2,4,6-trienoylcarnitine

Tetradeca-2,4,6-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-7,9,11-trienoylcarnitine

Tetradeca-7,9,11-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-4,7,10-trienoylcarnitine

Tetradeca-4,7,10-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-6,9,12-trienoylcarnitine

Tetradeca-6,9,12-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-5,8,11-trienoylcarnitine

Tetradeca-5,8,11-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-6,8,10-trienoylcarnitine

Tetradeca-6,8,10-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

Tetradeca-8,10,12-trienoylcarnitine

Tetradeca-8,10,12-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine

(4Z,10Z,12E)-Tetradeca-4,10,12-trienoylcarnitine

C21H35NO4 (365.25659500000006)


   

N-butyl-N-[(6-methoxy-2-oxo-1H-quinolin-3-yl)methyl]-2-pyridinecarboxamide

N-butyl-N-[(6-methoxy-2-oxo-1H-quinolin-3-yl)methyl]-2-pyridinecarboxamide

C21H23N3O3 (365.1739328)


   

N-(2-aminophenyl)-4-hydroxy-2-oxo-1-pentyl-3-quinolinecarboxamide

N-(2-aminophenyl)-4-hydroxy-2-oxo-1-pentyl-3-quinolinecarboxamide

C21H23N3O3 (365.1739328)


   
   

7-(4-Ethoxyphenyl)-5-(3-methoxyphenyl)-1,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidin-2-amine

7-(4-Ethoxyphenyl)-5-(3-methoxyphenyl)-1,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidin-2-amine

C20H23N5O2 (365.1851658)


   
   

N-[2-(4-Isobutyryl-piperazin-1-yl)-phenyl]-4-methyl-benzamide

N-[2-(4-Isobutyryl-piperazin-1-yl)-phenyl]-4-methyl-benzamide

C22H27N3O2 (365.2103162)


   

N-(1,5-dimethyl-3-oxo-2-phenyl-4-pyrazolyl)-3-(2-methylphenoxy)propanamide

N-(1,5-dimethyl-3-oxo-2-phenyl-4-pyrazolyl)-3-(2-methylphenoxy)propanamide

C21H23N3O3 (365.1739328)


   

2-[[3-Acetyl-1-[4-(dimethylamino)phenyl]-2-methyl-5-indolyl]oxy]acetamide

2-[[3-Acetyl-1-[4-(dimethylamino)phenyl]-2-methyl-5-indolyl]oxy]acetamide

C21H23N3O3 (365.1739328)


   

4-hydroxy-2-oxo-1-pentyl-N-(pyridin-2-ylmethyl)-1,2-dihydroquinoline-3-carboxamide

4-hydroxy-2-oxo-1-pentyl-N-(pyridin-2-ylmethyl)-1,2-dihydroquinoline-3-carboxamide

C21H23N3O3 (365.1739328)


   

4-[(2E)-2-(3-allyl-2-hydroxybenzylidene)hydrazino]-N-(4-methylphenyl)-4-oxobutanamide

4-[(2E)-2-(3-allyl-2-hydroxybenzylidene)hydrazino]-N-(4-methylphenyl)-4-oxobutanamide

C21H23N3O3 (365.1739328)


   

18-hydroxycarbocyclic thromboxane A2(1-)

18-hydroxycarbocyclic thromboxane A2(1-)

C21H33O5- (365.23278680000004)


   

[1-[(1-Ethyl-4-pyrazolyl)methyl]-3-piperidinyl]-[3-(trifluoromethyl)phenyl]methanone

[1-[(1-Ethyl-4-pyrazolyl)methyl]-3-piperidinyl]-[3-(trifluoromethyl)phenyl]methanone

C19H22F3N3O (365.1714878)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

15-Methylhexadecasphing-4-enine 1-phosphate

15-Methylhexadecasphing-4-enine 1-phosphate

C17H36NO5P (365.2330976)


   

N-(2-cyclohexylidene-1-phenylethyl)-1,1-diphenylmethanimine

N-(2-cyclohexylidene-1-phenylethyl)-1,1-diphenylmethanimine

C27H27N (365.21433820000004)


   

3-[4-[(1R,5S)-3-(phenylmethyl)-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile

3-[4-[(1R,5S)-3-(phenylmethyl)-3,6-diazabicyclo[3.1.1]heptan-7-yl]phenyl]benzonitrile

C25H23N3 (365.1891878)


   

(2S,3S,3aR,9bR)-N-(2,3-dihydro-1H-inden-2-yl)-3-(hydroxymethyl)-6-oxo-1,2,3,3a,4,9b-hexahydropyrrolo[2,3-a]indolizine-2-carboxamide

(2S,3S,3aR,9bR)-N-(2,3-dihydro-1H-inden-2-yl)-3-(hydroxymethyl)-6-oxo-1,2,3,3a,4,9b-hexahydropyrrolo[2,3-a]indolizine-2-carboxamide

C21H23N3O3 (365.1739328)


   

(1S,9R,10R,11R)-11-(3,4-dihydro-1H-isoquinoline-2-carbonyl)-10-(hydroxymethyl)-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one

(1S,9R,10R,11R)-11-(3,4-dihydro-1H-isoquinoline-2-carbonyl)-10-(hydroxymethyl)-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one

C21H23N3O3 (365.1739328)


   

(1S,5R)-7-[4-(4-methoxyphenyl)phenyl]-N-propyl-3,6-diazabicyclo[3.1.1]heptane-3-carboxamide

(1S,5R)-7-[4-(4-methoxyphenyl)phenyl]-N-propyl-3,6-diazabicyclo[3.1.1]heptane-3-carboxamide

C22H27N3O2 (365.2103162)


   

[(2R,3S,4S)-4-[(propan-2-ylamino)methyl]-3-[4-[(E)-prop-1-enyl]phenyl]-1-(pyridin-3-ylmethyl)azetidin-2-yl]methanol

[(2R,3S,4S)-4-[(propan-2-ylamino)methyl]-3-[4-[(E)-prop-1-enyl]phenyl]-1-(pyridin-3-ylmethyl)azetidin-2-yl]methanol

C23H31N3O (365.2466996)


   

(2R,3R,3aS,9bS)-N-(2,3-dihydro-1H-inden-2-yl)-3-(hydroxymethyl)-6-oxo-1,2,3,3a,4,9b-hexahydropyrrolo[2,3-a]indolizine-2-carboxamide

(2R,3R,3aS,9bS)-N-(2,3-dihydro-1H-inden-2-yl)-3-(hydroxymethyl)-6-oxo-1,2,3,3a,4,9b-hexahydropyrrolo[2,3-a]indolizine-2-carboxamide

C21H23N3O3 (365.1739328)


   

(1R,9S,10S,11S)-11-(3,4-dihydro-1H-isoquinoline-2-carbonyl)-10-(hydroxymethyl)-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one

(1R,9S,10S,11S)-11-(3,4-dihydro-1H-isoquinoline-2-carbonyl)-10-(hydroxymethyl)-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one

C21H23N3O3 (365.1739328)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

beta-D-Tyvp-(1->3)-beta-D-GalpNAc-OMe

beta-D-Tyvp-(1->3)-beta-D-GalpNAc-OMe

C15H27NO9 (365.16857319999997)


   
   

Undecanal O-[(pentafluorophenyl)methyl]oxime

Undecanal O-[(pentafluorophenyl)methyl]oxime

C18H24F5NO (365.1777954)


   

(2S)-2-[[(1S)-1-carboxy-2-phenylethyl]carbamoylamino]-5-(diaminomethylideneamino)pentanoic acid

(2S)-2-[[(1S)-1-carboxy-2-phenylethyl]carbamoylamino]-5-(diaminomethylideneamino)pentanoic acid

C16H23N5O5 (365.1699108)


   
   

6-Hydroxy-3,4-dihydro-2,5,7,8-tetramethyl-2-[2-[(3-isopropylamino-2-hydroxypropyl)oxy]ethyl]-2H-1-benzopyran

6-Hydroxy-3,4-dihydro-2,5,7,8-tetramethyl-2-[2-[(3-isopropylamino-2-hydroxypropyl)oxy]ethyl]-2H-1-benzopyran

C21H35NO4 (365.25659500000006)


   

TRIMETHAPHAN

TRIMETHAPHAN

C22H25N2OS+ (365.16875)


C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BA - Sulfonium derivatives C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C66886 - Nicotinic Antagonist D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002491 - Central Nervous System Agents

   

Nequinate

Nequinate

C22H23NO4 (365.16269980000004)


C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

(2S,3R,4E)-2-aminoheptadec-4-ene-1,3-diol-1-phosphate

(2S,3R,4E)-2-aminoheptadec-4-ene-1,3-diol-1-phosphate

C17H36NO5P (365.2330976)


   

AcCa(14:3)

AcCa(14:3)

C21H35NO4 (365.25659500000006)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   

C17 Sphingosine 1-phosphate

C17 Sphingosine 1-phosphate

C17H36NO5P (365.2330976)


   
   
   

5'-O-TBDMS-dA

5'-O-TBDMS-dA

C16H27N5O3Si (365.1883072)


5'-O-TBDMS-dA is a modified nucleoside and can be used to synthesize DNA or RNA.