Exact Mass: 331.2232856
Exact Mass Matches: 331.2232856
Found 414 metabolites which its exact mass value is equals to given mass value 331.2232856
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Tetramethrin
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals
Bucharaine
Origin: Plant; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.132 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.131 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.129 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.128
(+)-Mahanimbine
(±)-Mahanimbine is found in herbs and spices. (±)-Mahanimbine is an alkaloid from the stem bark of Murraya koenigii (curryleaf tree Alkaloid from the stem bark of Murraya koenigii (curryleaf tree). (±)-Mahanimbine is found in herbs and spices.
Salmefamol
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist
(+)-Mahanimbicine
(+)-Mahanimbicine is found in herbs and spices. (+)-Mahanimbicine is an alkaloid from the leaves of Murraya koenigii (curryleaf tree (+)-Mahanimbicine is a member of carbazoles. (+)-Mahanimbicine is a natural product found in Murraya koenigii with data available.
(±)-Currayangine
Currayangine is a member of phenanthridines. Curryangine is a natural product found in Murraya koenigii and Murraya paniculata with data available. (±)-Currayangine is found in herbs and spices. (±)-Currayangine is an alkaloid from the leaves and stem bark of Murraya koenigii (curryleaf tree
Isomurrayazoline
Isomurrayazoline is found in herbs and spices. Isomurrayazoline is an alkaloid from the stem bark of Murraya koenigii (curryleaf tree
Currayanine
Currayanine is found in herbs and spices. Currayanine is an alkaloid from the leaves and stem bark of Murraya koenigii (curryleaf tree
Pandamarilactone 31
Pandamarilactone 31 is a food flavouring. Pandamarilactone 31 is an alkaloid from leaves of Pandanus amaryllifolius. Food flavouring. Alkaloid from leaves of Pandanus amaryllifolius
Bicyclomahanimbine
Bicyclomahanimbine is found in herbs and spices. Bicyclomahanimbine is an alkaloid from the leaves of Murraya koenigii (curryleaf tree
Bicyclomahanimbicine
Bicyclomahanimbicine is found in herbs and spices. Bicyclomahanimbicine is an alkaloid from the leaves of Murraya koenigii (curryleaf tree
2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam
2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam is found in herbs and spices. 2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam is isolated from a commercial sample of catnip oil (Nepeta cataria). Isolated from a commercial sample of catnip oil (Nepeta cataria). 2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam is found in tea and herbs and spices.
Marimastat
Marimastat is only found in individuals that have used or taken this drug. It is used in the treatment of cancer, Marmiastat is an angiogenesis and metastasis inhibitor. As an angiogenesis inhibitor it limits the growth and production of blood vessels. As an antimetatstatic agent it prevents malignant cells from breaching the basement membranes.Marimastat is a broad spectrum matrix metalloprotease inhibitor. It mimics the peptide structure of natural MMP substrates and binds to matrix metalloproteases, thereby preventing the degradation of the basement membrane by these proteases. This antiprotease action prevents the migration of endothelial cells needed to form new blood vessels. Inhibition of MMPs also prevents the entry and exit of tumor cells into existing blood cells, thereby preventing metastasis. C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C1970 - Matrix Metalloproteinase Inhibitor C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor D004791 - Enzyme Inhibitors
5-hydroxy saxagliptin
5-hydroxy saxagliptin is a metabolite of saxagliptin. Saxagliptin, previously identified as BMS-477118, is a new oral hypoglycemic of the new dipeptidyl peptidase-4 (DPP-4) inhibitor class of drugs. Early development was solely by Bristol-Myers Squibb; in 2007 AstraZeneca joined with Bristol-Myers Squibb to co-develop the final compound and collaborate on the marketing of the drug. A New Drug Application for saxagliptin in the treatment of type 2 diabetes was submitted to the FDA in June 2008. (Wikipedia)
3-hydroxydecanoyl carnitine
3-Hydroxydecanoyl carnitine is an acylcarnitine. More specifically, it is an 3-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxydecanoyl carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-methyloctanedioylcarnitine
3-methyloctanedioylcarnitine is an acylcarnitine. More specifically, it is an 3-methyloctanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-methyloctanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-methyloctanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
2,4-dimethylheptanedioylcarnitine
2,4-dimethylheptanedioylcarnitine is an acylcarnitine. More specifically, it is an 2,4-dimethylheptanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2,4-dimethylheptanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2,4-dimethylheptanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
7-Hydroxydecanoylcarnitine
7-Hydroxydecanoylcarnitine is an acylcarnitine. More specifically, it is an 7-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 7-Hydroxydecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
6-Hydroxydecanoylcarnitine
6-Hydroxydecanoylcarnitine is an acylcarnitine. More specifically, it is an 6-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-Hydroxydecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
2-Hydroxydecanoylcarnitine
2-Hydroxydecanoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Hydroxydecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
8-Hydroxydecanoylcarnitine
8-Hydroxydecanoylcarnitine is an acylcarnitine. More specifically, it is an 8-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 8-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 8-Hydroxydecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Hydroxydecanoylcarnitine
5-Hydroxydecanoylcarnitine is an acylcarnitine. More specifically, it is an 5-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Hydroxydecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
4-Hydroxydecanoylcarnitine
4-Hydroxydecanoylcarnitine is an acylcarnitine. More specifically, it is an 4-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Hydroxydecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
9-Hydroxydecanoylcarnitine
9-Hydroxydecanoylcarnitine is an acylcarnitine. More specifically, it is an 9-hydroxydecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Hydroxydecanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 9-Hydroxydecanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Nonanedioylcarnitine
nonanedioylcarnitine is an acylcarnitine. More specifically, it is an nonanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. nonanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine nonanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Lauroyl Methionine
N-lauroyl methionine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Methionine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Methionine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Methionine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Cysteine
N-myristoyl cysteine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Cysteine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Cysteine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Cysteine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
2H-1,2-Oxazin-3(4H)-one, 4-((3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl)methylene)dihydro-2-methyl-
Prizidilol
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
N-Methoxy-3-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-pyrrolidone
3,7-Dihydro-3,10-dimethyl-3-(4-methyl-3-pentenyl)pyrano[2,3-c]carbazole
(Z)-N-<2-(4-hydroxyphenyl)ethyl>-3-methyldodec-2-enamide|(Z)-N-[2-(4-Hydroxyphenyl)-ethyl]-3-methyl-2-dodecenamide|(Z)-N-[2-(4-hydroxyphenyl)ethyl]-3-methyldodec-2-enamide
C21H33NO2 (331.25111580000004)
N-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)ethanamine
Aad(-Ala-D-Val)|L,L,D-alpha-aminodipoyl-alanyl-valine
15,16-ethane-1,2-diyldioxy-3beta-methoxy-(6xi)-erythrinan-2alpha-ol|Erythratin
3,3,5,7-tetramethyl-1,2,3,4,5,13-hexahydro-1,5;2,4-dimethano-oxocino[3,2-a]carbazole|Bicyclomahamimbin|Bicyclomahanimbin
3,3,5,10-tetramethyl-1,2,3,4,5,13-hexahydro-1,5;2,4-dimethano-oxocino[3,2-a]carbazole|Bicyclomahanimbicin
(3aR)-3c-methyl-4t-[trans-2-((2S)-6t-methyl-piperidin-2r-yl)-vinyl]-(3ar,4ac,8ac,9ac)-decahydro-naphtho[2,3-c]furan-1-one|(3S,3aR,4R,4aS,8aR,9aS)-decahydro-3-methyl-4-[2-(E)-[(2S,6R)-6-methylpiperidin-2-yl]ethenyl]naphtho[2,3-c]furan-1(3H)-one|Himandravin|Himbelin|Himbeline|Himbellin
C21H33NO2 (331.25111580000004)
12-methoxy-kesselringane-2,11beta-diol|Kesselringin|kesselringine|O-Methyl-kesselringin
(8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide|dehydroretrofractamide C
5,5,7-trimethyl-2-methylene-1,2,3,4,4a,5,13,13c-octahydro-isochromeno[4,3-a]carbazole|Murrayazolidin
Lotusine hydroxide
Lotusine (hydroxide) is a pure alkaloid extracted from the green seed embryo of Nelumbo nucifera Gaertn. Lotusine (hydroxide) shows effects on the action potentials in myocardium and slow inward current in cardiac Purkinje fibers[1].
2-[2-[(2-acetamido-4-methylpentanoyl)amino]propanoylamino]-3-hydroxypropanoic acid
C23H25NO_Pyrano[3,2-a]carbazole, 3,11-dihydro-3,5-dimethyl-3-(4-methyl-3-penten-1-yl)
2-[2-[(2-acetamido-4-methylpentanoyl)amino]propanoylamino]-3-hydroxypropanoic acid [IIN-based on: CCMSLIB00000847807]
2-[2-[(2-acetamido-4-methylpentanoyl)amino]propanoylamino]-3-hydroxypropanoic acid [IIN-based: Match]
Marimastat
C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C1970 - Matrix Metalloproteinase Inhibitor C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor D004791 - Enzyme Inhibitors
Bicyclomahanimbicine
Bicyclomahanimbine
curryangin
(+)-Mahanimbicine
Isomurrayazoline
Curryanine
2-[Octahydro-4,7-dimethyl-1-oxocyclopenta[c]pyran-3-yl]nepetalactam
Pandamarilactone 31
(4-hydroxypiperidin-1-yl)-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanone
C18H26BNO4 (331.19547860000006)
trans-4-(4-Pentylcyclohexyl)-4-biphenylcarbonitrile
1-(4-(5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-3-YL)PIPERAZIN-1-YL)ETHANONE
C17H26BN3O3 (331.20671160000006)
2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine
C17H27B2NO4 (331.21260820000003)
tert-Butyl 4-(3-oxo-3-phenylpropanoyl)piperidine-1-carboxylate
4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PHENYL PIPERIDINE-1-CARBOXYLATE
C18H26BNO4 (331.19547860000006)
3,5-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine
C17H27B2NO4 (331.21260820000003)
TERT-BUTYL 4-(3-METHYL-2-OXO-2,3-DIHYDRO-1H-BENZO[D]IMIDAZOL-1-YL)PIPERIDINE-1-CARBOXYLATE
(2S,4R)-1-Boc-4-(tert-butyldimethylsilyloxy)-2-(hydroxyMethyl)pyrrolidine
Hydroxy Saxagliptin
D007004 - Hypoglycemic Agents > D054873 - Dipeptidyl-Peptidase IV Inhibitors D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
4-(Tetrahydrofurfurylaminocarbonyl)benzeneboronic acid pinacol ester
C18H26BNO4 (331.19547860000006)
Acetamide, N-[1-[tris(1-methylethyl)silyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-
1-Benzyl 3-ethyl 3-allyl-1,3-piperidinedicarboxylate
TETRAPROPYLAMMONIUM HEXAFLUOROPHOSPHATE
C12H28F6NP (331.1863450000001)
1-[1-[2-[(3S)-2,3-dihydro-1,4-benzodioxin-3-yl]ethyl]piperidin-4-yl]imidazolidin-2-one
1-(2-(4-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PHENOXY)ETHYL)PIPERIDINE
Methyl 3-oxo-4-aza-5alpha-androst-1-ene-17beta-carboxylate
1-(4-morpholinyl)-2-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-Ethanone
C18H26BNO4 (331.19547860000006)
1H-Pyrrolo[2,3-b]pyridine-3-methanamine, N,N-dimethyl-1-[tris(1-methylethyl)silyl]-
C19H33N3Si (331.24436180000004)
2-Phenyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)quinoline
(1-methylpiperidin-3-yl) 2-cyclohexyl-2-hydroxy-2-phenylacetate
azanium,butyl prop-2-enoate,ethyl prop-2-enoate,2-methylprop-2-enoate
ethyl 3-[1-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]indol-2-yl]propanoate
TERT-BUTYL 2-(2-ETHOXY-1,1-DIMETHYL-2-OXOETHYL)-1H-INDOLE-1-CARBOXYLATE
4-[3-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]propyl]morpholine
N-{3-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyoxy]propyl}pyrrolidine
2-[[(3R,4S)-3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-7,7-dimethyl-2,6,8-trioxabicyclo[3.3.0]oct-4-yl]oxy]-N,N-dimethyl-ethanamine
2-[bis(2-hydroxyethyl)amino]ethyl laurate
C18H37NO4 (331.27224420000005)
N-(tetrahydro-2H-pyran-4-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide
C18H26BNO4 (331.19547860000006)
3-(Tetrahydrofurfurylaminocarbonyl)benzeneboronic acid pinacol ester
C18H26BNO4 (331.19547860000006)
(3S,4S)-3,4-BIS[[(1,1-DIMETHYLETHYL)DIMETHYLSILYL]OXY]PYRROLIDINE
C16H37NO2Si2 (331.23627020000004)
ETHYL 4-(BENZYLOXYCARBONYLAMINO)BICYCLO[2.2.2]OCTANE-1-CARBOXYLATE
(2S,3S,4E,6E,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid
Centhaquine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-phenyl-N-(2-piperidin-1-ylethyl)quinolin-4-amine
(2S)-6-amino-2-[[2-[[(2S)-2,6-diaminohexanoyl]amino]acetyl]amino]hexanoic Acid
C14H29N5O4 (331.22194340000004)
(8r)-8-[(Dimethylamino)methyl]-1-[3-(Dimethylamino)propyl]-1,7,8,9-Tetrahydrochromeno[5,6-D]imidazol-2-Amine
1-[(2r)-2-Aminobutanoyl]-N-(4-Carbamimidoylbenzyl)-L-Prolinamide
(2S,3S,8S,9S)-3-Amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid
Carnosate
C20H27O4- (331.19092420000004)
A monocarboxylic acid anion resulting from the deprotonation of the carboxy group of carnosic acid. The major species at pH 7.3.
N-(6-Ethyl-1-oxoindan-4-ylcarbonyl)isoleucine methyl ester
4-{3-[(1E,3E,5E,8E,10E,12R)-12-hydroxytetradeca-1,3,5,8,10-pentaen-1-yl]oxiran-2-yl}butanoate
C20H27O4- (331.19092420000004)
(11S,16S)-7-oxo-ent-kauran-11,16-epoxy-19-oate
C20H27O4- (331.19092420000004)
(1R,2S,4R,5R,8R,9S,11S)-9-formyl-2-(hydroxymethyl)-5-methyl-13-propan-2-yltetracyclo[7.4.0.02,11.04,8]tridec-12-ene-1-carboxylate
C20H27O4- (331.19092420000004)
(3E)-3-[(2S)-1-hydroxy-2,4-dimethylhexylidene]-5-[(4-hydroxyphenyl)methyl]pyrrolidine-2,4-dione
(3Z)-3-[(3,5-ditert-butyl-4-hydroxyphenyl)methylidene]-1-methoxypyrrolidin-2-one
(4Z)-4-[(3,5-ditert-butyl-4-hydroxyphenyl)methylidene]-2-methyloxazinan-3-one
3-(2,6-Dimethylpiperidin-1-yl)-5-{(E)-[hydroxy(4-methoxyphenyl)methylidene]amino}-1,2,3-oxadiazol-3-ium
C17H23N4O3+ (331.17700679999996)
[2-(8-Amino-7-oxononanoyl)oxy-3-carboxypropyl]-trimethylazanium
(8E)-N-isobutyl-9-(3,4-methylenedioxyphenyl)nona-8-enamide
A natural product found in Piper boehmeriaefolium.
Leu-Leu-Ser
A tripeptide composed of two L-leucine units and L-serine joined in sequence by peptide linkages.
1-tert-butyl-3-(naphthalen-2-ylmethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine
Propenzolate
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
3-Hydroxydecanoylcarnitine
An O-acylcarnitine having 3-hydroxydecanoyl as the acyl substituent.
1-(3,4-Dimethylphenyl)-4-(4-methylpiperidin-1-yl)phthalazine
1-[[3-(2-Fluorophenyl)-1-methyl-4-pyrazolyl]methyl]-3-propoxypiperidine
4-Anilino-4-oxobutanoic acid (4-tert-butylcyclohexyl) ester
3-(3-hydroxypropylamino)-7-methyl-1-(pentylamino)-6,8-dihydro-5H-2,7-naphthyridine-4-carbonitrile
5(S),6(S)-epoxy-18(R)-hydroxy-(7E,9E,11Z,14Z,16E)-icosapentaenoate
C20H27O4- (331.19092420000004)
An epoxy hydroxyeicosapentaenoate anion arising from deprotonation of the carboxylic acid function of 5(S),6(S)-epoxy-18(R)-hydroxy-(7E,9E,11Z,14Z,16E)-eicosapentaenoic acid; major species at pH 7.3.
6-[2-(1-azepanyl)-2-oxoethoxy]-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-4-one
(1R,3aR,4S,4aR,7R,7aR,8aS)-4-formyl-8a-(hydroxymethyl)-7-methyl-3-(propan-2-yl)-4,4a,5,6,7,7a,8,8a-octahydro-1,4-methano-s-indacene-3a(1H)-carboxylate
C20H27O4- (331.19092420000004)
4-{(2S,3S)-3-[(1E,3E,5Z,8Z,10E)-12-hydroxytetradeca-1,3,5,8,10-pentaen-1-yl]oxiran-2-yl}butanoate
C20H27O4- (331.19092420000004)
(5S,6S)-epoxy-(18S)-hydroxy-(7E,9E,11Z,14Z,16E)-eicosapentaenoate
C20H27O4- (331.19092420000004)
(5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,10,13,17-tetraen-1-oate
C20H27O4- (331.19092420000004)
4-[(1R)-1-hydroxy-2-[[(2R)-1-(4-methoxyphenyl)propan-2-yl]amino]ethyl]-2-(hydroxymethyl)phenol
1-[4-[2-methoxy-4-[(E)-prop-1-enyl]phenoxy]butyl]-3,5-dimethylpiperidine
C21H33NO2 (331.25111580000004)
N-{5-ethyl-1-[2-(morpholin-4-yl)ethyl]-2-oxo-2,3-dihydro-1H-indol-3-yl}acetamide
(5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,8(12),13,17-tetraen-1-oate
C20H27O4- (331.19092420000004)
N-[(2S,3S,4R)-1,3,4-trihydroxy-15-methylhexadecan-2-yl]formamide
C18H37NO4 (331.27224420000005)
(5Z)-7-{(1S,5R)-5-[(1E,3S,5Z)-3-hydroxyocta-1,5-dien-1-yl]-4-oxocyclopent-2-en-1-yl}hept-5-enoate
C20H27O4- (331.19092420000004)
11-[(3,6-dideoxy-alpha-L-arabino-hexopyranosyl)oxy]undecanoate
Delta(12)-prostaglandin J3(1-)
C20H27O4- (331.19092420000004)
A prostaglandin carboxylic acid anion that is the conjugate base of Delta(12)-prostaglandin J3. obtained by deprotonation of the carboxy group; major species at pH 7.3.
10-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-oxodecanoate
(9R)-9-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-3-oxodecanoate
(10R)-10-[(2R,3R,5R,6S)-3,5-dihydroxy-6-methyloxan-2-yl]oxyundecanoate
2-[2-[(2-Acetamido-4-methylpentanoyl)amino]propanoylamino]-3-hydroxypropanoic acid
2-(2-Hydroxyethoxy)-N-(2-diethylaminoethyl)-4-quinolinecarboxamide
Ethyl (4R*,5R*)-(E)-5-(carbamoyl)oxy-4-(triethylsilyl)oxy-2-hexenoate
Methyl (4S,5S)-(Z)-5-(carbamoyl)oxy-4-(triethylsilyl)oxy-3-methyl-2-hexenoate
2-(3-Hydroxybutoxy)-N-[2-(ethylamino)ethyl]-4-quinolinecarboxamide
(2S)-2-[4-(1-Ethoxyethoxy)-1-hydroxybutyl]pyrrolidine-1-carboxylic acid tert-butyl ester
2-(3-Hydroxybutoxy)-N-(2-(dimethylamino)ethyl)-4-quinolinecarboxamide
Tetramethrin
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals
all-cis-docosa-7,10,13,16-tetraenoate
A polyunsaturated fatty acid anion that is the conjugate base of all-cis-docosa-7,10,13,16-tetraenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
prostaglandin A3(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of prostaglandin A3, obtained by deprotonation of the carboxy group; major species at pH 7.3.
Salmefamol
prostaglandin J3(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of prostaglandin J3. obtained by deprotonation of the carboxy group; major species at pH 7.3.
oscr#18(1-)
A hydroxy fatty acid ascaroside anion that is the conjugate base of oscr#18, obtained by deprotonation of the carboxy group; major species at pH 7.3.
sordaricin(1-)
A 3-oxo monocarboxylic acid anion that is the conjugate base of sordaricin, arising from deprotonation of the carboxy group; major species at pH 7.3.
prostaglandin B3(1-)
A prostaglandin carboxylic acid anion that is the conjugate base of prostaglandin B3, obtained by deprotonation of the carboxy group; major species at pH 7.3.
5(S),6(S)-epoxy-18(S)-hydroxy-(7E,9E,11Z,14Z,16E)-icosapentaenoate
A 5(),6(S)-epoxy-18-hydroxy-(7E,9E,11Z,14Z,16E)-icosapentaenoate in which the 12-hydroxy group has S-configuration.
Acid Ceramidase-IN-1
Acid Ceramidase-IN-1 is a potent and oral bioavailable acid ceramidase (AC, ASAH-1) inhibitor (hAC IC50=0.166 μM). Acid Ceramidase-IN-1 has excellent brain penetration in mice[1].
{[(2r,4ar,7r,8as,10as)-7-ethenyl-1,1,4a,7-tetramethyl-3,4,6,8,8a,9,10,10a-octahydro-2h-phenanthren-2-yl]oxy}methanimidic acid
C21H33NO2 (331.25111580000004)
3,10-dimethyl-3-(4-methylpent-3-en-1-yl)-7h-pyrano[2,3-c]carbazole
(3r)-3,5-dimethyl-3-(4-methylpent-3-en-1-yl)-11h-pyrano[3,2-a]carbazole
3-{13-isopropyl-1-methyl-11-azapentacyclo[8.5.0.0²,¹².0³,⁷.0⁷,¹¹]pentadecan-2-yl}propanoic acid
C21H33NO2 (331.25111580000004)