Exact Mass: 176.0015888
Exact Mass Matches: 176.0015888
Found 500 metabolites which its exact mass value is equals to given mass value 176.0015888
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
L-2-Amino-3-(oxalylamino)propanoic acid
L-2-Amino-3-(oxalylamino)propanoic acid is found in grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is isolated from Panax notoginseng (sanchi Isolated from Panax notoginseng (sanchi). L-2-Amino-3-(oxalylamino)propanoic acid is found in tea and grass pea. L-2-Amino-3-(oxalylamino)propanoic acid is an alpha-amino acid. N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.
4-Methylumbelliferone
Beta-methylumbelliferone appears as colorless crystals. Insoluble in water. (NTP, 1992) 4-methylumbelliferone is a hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. It has a role as an antineoplastic agent and a hyaluronic acid synthesis inhibitor. It is functionally related to an umbelliferone. Hymecromone is a natural product found in Ferula fukanensis, Dalbergia volubilis, and other organisms with data available. 4-methylumbelliferone is a metabolite found in or produced by Saccharomyces cerevisiae. A coumarin derivative possessing properties as a spasmolytic, choleretic and light-protective agent. It is also used in ANALYTICAL CHEMISTRY TECHNIQUES for the determination of NITRIC ACID. 4-methylumbelliferone is a substrate for: Liver carboxylesterase 1, Cocaine esterase, and S-formylglutathione hydrolase. A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy A hydroxycoumarin that is umbelliferone substituted by a methyl group at position 4. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
Herniarin
Herniarin, also known as 7-methoxycoumarin or ayapanin, belongs to the class of organic compounds known as coumarins and derivatives. These are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Herniarin is a sweet, balsamic, and tonka tasting compound. Herniarin has been detected, but not quantified, in several different foods, such as barley, tarragons, roman camomiles, fruits, and wild celeries. This could make herniarin a potential biomarker for the consumption of these foods. Herniarin is a member of the class of coumarins that is coumarin substituted by a methoxy group at position 7. It has a role as a fluorochrome. 7-Methoxycoumarin is a natural product found in Haplopappus multifolius, Herniaria hirsuta, and other organisms with data available. See also: Chamomile (part of); Glycyrrhiza Glabra (part of). Present in Prunus mahaleb (mahaleb cherry). Herniarin is found in many foods, some of which are caraway, wild celery, barley, and fruits. A member of the class of coumarins that is coumarin substituted by a methoxy group at position 7. Herniarin is a natural coumarin occurs in some flowering plants, with antitumor effect. Herniarin is a natural coumarin occurs in some flowering plants, with antitumor effect.
L-Ascorbic acid
L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
D-Glucurono-6,3-lactone
D-Glucurono-6,3-lactone belongs to the class of organic compounds known as isosorbides. These are organic polycyclic compounds containing an isosorbide(1,4-Dianhydrosorbitol) moiety, which consists of two -oxolan-3-ol rings. D-Glucurono-6,3-lactone is a very mild and mentholic tasting compound. Glucuronolactone is a naturally occurring substance that is an important structural component of nearly all connective tissues. It is frequently used in energy drinks to increase energy levels and improve alertness, and can also be used to reduce "brain fog" caused by various medical conditions. Glucuronolactone is also found in many plant gums. Glucuronolactone is a white solid odorless compound, soluble in hot and cold water. Its melting point ranges from 176 to 178 °C. The compound can exist in a monocyclic aldehyde form or in a bicyclic hemiacetal (lactol) form. Glucuronolactone is a popular ingredient in energy drinks because it has been shown to be effective at increasing energy levels and improving alertness. Glucuronolactone supplementation also significantly reduces "brain fog" cause by various medical conditions. Although levels of glucuronolactone in energy drinks can far exceed those found in the rest of the diet, glucuronolactone is extremely safe and well tolerated. The European Food Safety Authority (EFSA) has concluded that exposure to glucuronolactone from regular consumption of energy drinks is not a safety concern.[2] The no-observed-adverse-effect level of glucuronolactone is 1000 mg/kg/day. Additionally, according to The Merck Index, glucuronolactone is used as a detoxicant. The liver uses glucose to create glucuronolactone, which inhibits the enzyme B-glucuronidase (metabolizes glucuronides), which should cause blood-glucuronide levels to rise. Glucuronides combines with toxic substances, such as morphine and depot medroxyprogesterone acetate, by converting them to water-soluble glucuronide-conjugates which are excreted in the urine. Higher blood-glucuronides help remove toxins from the body, leading to the claim that energy drinks are detoxifying. Free glucuronic acid (or its self-ester glucuronolactone) has less effect on detoxification than glucose, because the body synthesizes UDP-glucuronic acid from glucose. Therefore, sufficient carbohydrate intake provides enough UDP-glucuronic acid for detoxication, and foods rich in glucose are usually abundant in developed nations. Glucuronolactone is also metabolized to glucaric acid, xylitol, and L-xylulose, and humans may also be able to use glucuronolactone as a precursor for ascorbic acid synthesis. D-glucurono-6,3-lactone participates in ascorbate and aldarate metabolism. D-glucurono-6,3-lactone is produced by the reaction between D-glucaric acid and the enzyme, aldehyde dehydrogenase (NAD+) [EC: 1.2.1.3]. [HMDB] D-Glucuronic acid lactone is an endogenous metabolite.
Ureidosuccinic acid
N-carbamoyl-l-aspartate, also known as N-carbamoylaspartic acid or L-ureidosuccinic acid, belongs to aspartic acid and derivatives class of compounds. Those are compounds containing an aspartic acid or a derivative thereof resulting from reaction of aspartic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-carbamoyl-l-aspartate is soluble (in water) and a weakly acidic compound (based on its pKa). N-carbamoyl-l-aspartate can be found in a number of food items such as mustard spinach, black huckleberry, towel gourd, and chinese cabbage, which makes N-carbamoyl-l-aspartate a potential biomarker for the consumption of these food products. N-carbamoyl-l-aspartate can be found primarily in prostate Tissue and saliva, as well as in human prostate tissue. In humans, N-carbamoyl-l-aspartate is involved in a couple of metabolic pathways, which include aspartate metabolism and pyrimidine metabolism. N-carbamoyl-l-aspartate is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, canavan disease, and UMP synthase deficiency (orotic aciduria). Moreover, N-carbamoyl-l-aspartate is found to be associated with prostate cancer. Ureidosuccinic acid, also known as L-ureidosuccinate or carbamyl-L-aspartate, belongs to the class of organic compounds known as aspartic acids and derivatives. Aspartic acids and derivatives are compounds containing an aspartic acid or a derivative thereof resulting from reaction of aspartic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Ureidosuccinic acid is also classified as a carbamate derivative. It is a solid that is soluble in water. Ureidosuccinic acid exists in all living species, ranging from bacteria to plants to humans. Ureidosuccinic acid can be biosynthesized from carbamoyl phosphate and L-aspartic acid through the action of the enzyme known as aspartate carbamoyltransferase (ACTase) and serves as an intermediate in pyrimidine biosynthesis. In humans, a drop in the level of urinary ureidosuccinic acid is associated with bladder cancer (PMID: 25562196). It is also involved in the metabolic disorder called Canavan disease. Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID C025 N-?Carbamoyl-?DL-?aspartic acid (Ureidosuccinic acid) is a precursor of nucleic acid pyrimidines[1].
3-Chloro-cis,cis-muconic acid
3-chloro-cis,cis-muconic acid is a 3-chloromuconic acid that is cis,cis-muconic acid substituted by a chloro substituent at position 3. It is functionally related to a cis,cis-muconic acid. It is a conjugate acid of a 3-chloro-cis,cis-muconate(2-).
1,2,3-Propanetricarboxylic acid
1,2,3-Propanetricarboxylic acid is found in corn. 1,2,3-Propanetricarboxylic acid is isolated from plants e.g. sugarbeet sap, sap of Acer saccharinum (maple syrup). Propane-1,2,3-tricarboxylic acid, also known as tricarballylic acid, carballylic acid, and beta-carboxyglutaric acid, is a tricarboxylic acid that has three carboxylic acid functional groups. The compound is an inhibitor of the enzyme aconitase and interferes with the Krebs cycle. 1,2,3-Propanetricarboxylic acid can be produced by Bacteroides, Butyrivibrio, Megasphaera, Wolinella and fungi Nectriaceae (PMID:22815244; PMID:16346691). It is also associated with Fumonisins. Fumonisins are fungal toxins produced by Fusarium verticilloides. Detection of this compound indicates presence of fumonisins in gastrointestinal tract. Corn intake or corn contaminated with fumonisins can lead to increased levels of tricarballylic acid (PMID:22815244). Isolated from plants e.g. sugarbeet sap, sap of Acer saccharinum (maple syrup) Tricarballylic acid, a conjugate acid of a?tricarballylate, is a competitive inhibitor of the enzyme aconitate hydratase (aconitase; EC 4.2.1.3) with a Ki value of 0.52 mM[1]. Tricarballylic acid, a conjugate acid of a?tricarballylate, is a competitive inhibitor of the enzyme aconitate hydratase (aconitase; EC 4.2.1.3) with a Ki value of 0.52 mM[1]. Tricarballylic acid, a conjugate acid of a?tricarballylate, is a competitive inhibitor of the enzyme aconitate hydratase (aconitase; EC 4.2.1.3) with a Ki value of 0.52 mM[1].
3-Dehydro-scyllo-inosose
A beta-diketone obtained by formal oxidation of the 2 and 4 hydroxy groups of scyllo-inositol to the corresponding ketones.
Chlorobutanol
A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D010592 - Pharmaceutic Aids
Erythorbic acid
D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant
Sodium thiosalicylate
C7H5NaO2S (175.99079500000002)
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D010575 - Pesticides > D005659 - Fungicides, Industrial > D005035 - Ethylmercury Compounds D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics
D-Galacturonolactone
10-Hydroxy-2,8-decadiene-4,6-diynoic acid
(E,E)-10-Hydroxy-2,8-decadiene-4,6-diynoic acid is found in mushrooms. (E,E)-10-Hydroxy-2,8-decadiene-4,6-diynoic acid is a constituent of Fistulina hepatica
7-Hydroxy-6-methyl-2H-1-benzopyran-2-one
7-Hydroxy-6-methyl-2H-1-benzopyran-2-one is found in herbs and spices. 7-Hydroxy-6-methyl-2H-1-benzopyran-2-one is a constituent of Trachyspermum roxburghianum (Bishops weed). Constituent of Trachyspermum roxburghianum (Bishops weed). 6-Methylumbelliferone is found in herbs and spices.
3-(3,4-Methylenedioxyphenyl)propenal
3-(3,4-Methylenedioxyphenyl)propenal is found in herbs and spices. 3-(3,4-Methylenedioxyphenyl)propenal is isolated from Sassafras albidum (sassafras). Isolated from Sassafras albidum (sassafras). 3-(3,4-Methylenedioxyphenyl)propenal is found in tea and herbs and spices.
L-3-Amino-2-(oxalylamino)propanoic acid
L-3-Amino-2-(oxalylamino)propanoic acid is found in pulses. L-3-Amino-2-(oxalylamino)propanoic acid is present in seeds of Lathyrus sativus (chickling pea). Present in seeds of Lathyrus sativus (chickling pea). L-3-Amino-2-(oxalylamino)propanoic acid is found in pulses.
1,4,5-Naphthalenetriol
1,4,5-Naphthalenetriol is found in nuts. 1,4,5-Naphthalenetriol occurs in green shells of unripe walnuts (Juglans sp.). Occurs in green shells of unripe walnuts (Juglans species). 1,4,5-Naphthalenetriol is found in nuts.
(2R)-2-[(3R,4S)-3,4-Dihydroxy-5-oxooxolan-2-yl]-2-hydroxyacetaldehyde
3,4-Dihydroxy-5-[(S)-1,2-dihydroxyethyl]furan-2(5H)-one
The L-form Occurs widely in animals and plants. Good sources are citrus fruits and hip berries. Isolated from ox adrenal cortex, lemons and paprika. [CCD]. Ascorbic acid is found in nanking cherry. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].
(R)-2-((S)-1,2-Dihydroxyethyl)-4,5-dihydroxyfuran-3(2H)-one
Chlorobutanol
A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D010592 - Pharmaceutic Aids
(3S,4R,5S)-3,4-Dihydroxy-5-(2-hydroxyacetyl)oxolan-2-one
(5R)-5-(1,2-Dihydroxyethyl)-3-hydroxyoxolane-2,4-dione
8-Methoxycoumarin
8-methoxycoumarin, also known as 8-methoxy chromen-2-one, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). 8-methoxycoumarin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 8-methoxycoumarin can be found in common wheat, which makes 8-methoxycoumarin a potential biomarker for the consumption of this food product. 8-methoxycoumarin is found in Herniaria glabra, Ayapana triplinervis and in species of the genus Prunus (P. mahaleb, P. pensylvanica, and P. maximowiczii) .
Ascorbic acid
Ascorbic acid is found naturally in citrus fruits and many vegetables and is an essential nutrient in human diets. It is necessary to maintain connective tissue and bone. The biologically active form of ascorbic acid is vitamin C. Vitamin C is a water soluble vitamin. Primates (including humans) and a few other species in all divisions of the animal kingdom, notably the guinea pig, have lost the ability to synthesize ascorbic acid and must obtain it in their food. Vitamin C functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant (PubChem). Ascorbic acid is an electron donor for enzymes involved in collagen hydroxylation, biosynthesis of carnitine and norepinephrine, tyrosine metabolism, and amidation of peptide hormones. Ascrobic acid (vitamin C) deficiency causes scurvy. The amount of vitamin C necessary to prevent scurvy may not be adequate to maintain optimal health. The ability of vitamin C to donate electrons also makes it a potent water-soluble antioxidant that readily scavenges free radicals such as molecular oxygen, superoxide, hydroxyl radical, and hypochlorous acid. In this setting, several mechanisms could account for a link between vitamin C and heart disease. One is the relation between LDL oxidation and vitamins C and E. Vitamin C in vitro can recycle vitamin E, which can donate electrons to prevent LDL oxidation in vitro. As the lipid-phase vitamin E is oxidized, it can be regenerated by aqueous vitamin C. Other possibilities are that vitamin C could decrease cholesterol by mechanisms not well characterized, or could improve vasodilatation and vascular reactivity, perhaps by decreasing the interactions of nitric oxide with oxidants (PMID: 10799361). Moreover, ascorbic acid is found to be associated with hyperoxalemia, which is an inborn error of metabolism. Ascorbic acid is also a microbial metabolite produced by Ketogulonicigenium (PMID: 15785002).
Occurs widely in animals and plants. Good sources are citrus fruits and hip berries. Isolated from ox adrenal cortex, lemons and paprika. Production industrially on a large scale from glucose. Vitamin (antiscorbutic), antioxidant, nutrient, preservative consistency enhancer. It is used to reduce discoloration, mainly browning caused by polyphenol oxidase, in fruit and vegetable products. It is used to enhance colour formn. and to reduced the formn. of nitrosamines in meat products. It is used synergistically with Sulfur dioxide
Ascorbic Acid
L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].
4,6-Dichloro-o-cresol
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8068
6-Hydroxy-4-methylcoumarin
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.663 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.664 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.659
3-(DIFLUOROMETHYL)-1-METHYL-1H-PYRAZOLE-4-CARBOXYLIC ACID
C6H6F2N2O2 (176.03973200000001)
Erythrocentaurin
Erythrocentaurin is a natural product found in Swertia decora, Gentiana pedicellata, and other organisms with data available.
Hymecromone
CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3335; ORIGINAL_PRECURSOR_SCAN_NO 3333 A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3322; ORIGINAL_PRECURSOR_SCAN_NO 3320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3312; ORIGINAL_PRECURSOR_SCAN_NO 3309 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3317; ORIGINAL_PRECURSOR_SCAN_NO 3316 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3331; ORIGINAL_PRECURSOR_SCAN_NO 3329 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3329; ORIGINAL_PRECURSOR_SCAN_NO 3326 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7326; ORIGINAL_PRECURSOR_SCAN_NO 7323 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7324; ORIGINAL_PRECURSOR_SCAN_NO 7320 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7332; ORIGINAL_PRECURSOR_SCAN_NO 7328 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7356 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7355 CONFIDENCE standard compound; INTERNAL_ID 967; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7342; ORIGINAL_PRECURSOR_SCAN_NO 7340 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3396; ORIGINAL_PRECURSOR_SCAN_NO 3391 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3389; ORIGINAL_PRECURSOR_SCAN_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3360; ORIGINAL_PRECURSOR_SCAN_NO 3358 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3383; ORIGINAL_PRECURSOR_SCAN_NO 3380 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3363; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7291; ORIGINAL_PRECURSOR_SCAN_NO 7286 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7335; ORIGINAL_PRECURSOR_SCAN_NO 7331 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7307; ORIGINAL_PRECURSOR_SCAN_NO 7303 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7337; ORIGINAL_PRECURSOR_SCAN_NO 7335 CONFIDENCE standard compound; INTERNAL_ID 207; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7336; ORIGINAL_PRECURSOR_SCAN_NO 7332 CONFIDENCE standard compound; INTERNAL_ID 4193 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
ascorbate
L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].
4-Methylumbelliferone
4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects. 4-Methylumbelliferone is a hyaluronic acid biosynthesis inhibitor with antitumoral and antimetastatic effects.
Carbamoyl-DL-aspartic acid
N-?Carbamoyl-?DL-?aspartic acid (Ureidosuccinic acid) is a precursor of nucleic acid pyrimidines[1].
L-Ascorbic acid
The L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate.
herniarin
Herniarin is a natural coumarin occurs in some flowering plants, with antitumor effect. Herniarin is a natural coumarin occurs in some flowering plants, with antitumor effect.
Fluxapyroxad (BAS 700 F)-TP CSAA798670
C6H6F2N2O2 (176.03973200000001)
CONFIDENCE standard compound; UCHEM_ID 4184 UCHEM_ID 4184; CONFIDENCE standard compound
D-Glucuronolactone
D-Glucuronic acid lactone is an endogenous metabolite.
Tricarballylic acid
Tricarballylic acid, a conjugate acid of a?tricarballylate, is a competitive inhibitor of the enzyme aconitate hydratase (aconitase; EC 4.2.1.3) with a Ki value of 0.52 mM[1]. Tricarballylic acid, a conjugate acid of a?tricarballylate, is a competitive inhibitor of the enzyme aconitate hydratase (aconitase; EC 4.2.1.3) with a Ki value of 0.52 mM[1]. Tricarballylic acid, a conjugate acid of a?tricarballylate, is a competitive inhibitor of the enzyme aconitate hydratase (aconitase; EC 4.2.1.3) with a Ki value of 0.52 mM[1].
N-Carbamoyl-DL-aspartic acid
N-?Carbamoyl-?DL-?aspartic acid (Ureidosuccinic acid) is a precursor of nucleic acid pyrimidines[1].
3-CHLORO-4-METHYL-2-THIOPHENECARBOXYLIC ACID
C6H5ClO2S (175.96987800000002)
5-Chloro-3-fluoro-2-nitropyridine
C5H2ClFN2O2 (175.97888340000003)
Pyrrolo[1,2-a]thieno[3,2-e]pyrazine, 4,5-dihydro- (9CI)
5-Mercapto-1,2,3-thiadiazole sodium salt dihydrate
2-chloro-5-methylthiophene-3-carboxylic acid
C6H5ClO2S (175.96987800000002)
1H-Pyrazole-4-carbonyl chloride, 5-fluoro-1,3-dimethyl- (9CI)
2-chloroethyl 2,2,2-trifluoroacetate
C4H4ClF3O2 (175.98519100000001)
2,2,2-TRIFLUORO-1-(PYRAZIN-2-YL)ETHANONE
C6H3F3N2O (176.01974639999997)
4-methoxythiophene-2-carbonyl chloride
C6H5ClO2S (175.96987800000002)
2-Amino-5,6-dihydro-4H-cyclopentathiazole hydrochloride
1-Cyclopentene-1-carbonyl chloride, 2-(methylthio)- (9CI)
4,5,6,7-Tetrahydrothiazolo[5,4-c]pyridine hydrochloride
2-Chloro-5-fluoro-3-nitropyridine
C5H2ClFN2O2 (175.97888340000003)
2-Chloro-3-fluoro-4-nitropyridine
C5H2ClFN2O2 (175.97888340000003)
3-METHOXYCARBONYL-2,5-DIHYDROTHIOPHENE-1,1-DIOXIDE
(4-FLUORO-PHENYL)-[2-(3-METHOXY-PHENYL)-ETHYL]-AMINE
2,4-DICHLOROBENZYLALCOHOL
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
1-methyl-4-imidazoleacetic acid hydrochloride
C6H9ClN2O2 (176.03525240000002)
3-(Trifluoromethyl)pyrazine-2-carbaldehyde
C6H3F3N2O (176.01974639999997)
2-amino-1-(5-amino-1H-imidazol-4-yl)ethanone dihydrochloride
Gaboxadol hydrochloride
C6H9ClN2O2 (176.03525240000002)
Gaboxadol hydrochloride (Lu 02-030 hydrochloride) is a potent agonist of the GABAA receptor and an antagonist of GABAC receptors (IC50=25 μM). Gaboxadol hydrochloride displays a partial agonist efficacy on subunit α1β2γ2 with an ED50 value of 143 μM, a full agonist efficacy at α5 subunit (ED50=28-129 μM) and a superagonist efficacy at α4β3δ (ED50=6 μM). Gaboxadol hydrochloride is a non-opioid agent[1][2].
6-(Trifluoromethyl)pyridazine-3-carbaldehyde
C6H3F3N2O (176.01974639999997)
2-chloro-N-(prop-2-enylcarbamoyl)acetamide
C6H9ClN2O2 (176.03525240000002)
2-(trifluoromethyl)pyrimidine-5-carbaldehyde
C6H3F3N2O (176.01974639999997)
Thieno[2,3-b]pyridine-2-carbonitrile, 3-hydroxy- (9CI)
5-(DIFLUOROMETHYL)-1-METHYL-1H-PYRAZOLE-4-CARBOXYLIC ACID
C6H6F2N2O2 (176.03973200000001)
Methyl 3-chloro-2-thiophenecarboxylate
C6H5ClO2S (175.96987800000002)
2-METHYL-5,6-DIHYDRO-4H-PYRROLO[3,4-D]THIAZOLE HYDROCHLORIDE
7-HYDROXY-5-OXO-4,5-DIHYDROPYRAZOLO[1,5-A]PYRIMIDINE-3-CARBONITRILE
5-Chloro-2-fluoro-3-nitropyridine
C5H2ClFN2O2 (175.97888340000003)
N-(2-Aminoethyl)maleimide hydrochloride salt
C6H9ClN2O2 (176.03525240000002)
methyl 5-chlorothiophene-3-carboxylate
C6H5ClO2S (175.96987800000002)
Cyclopropanecarboxylic acid, 2-(chlorocarbonyl)-, ethyl ester (9CI)
METHYL 2-(1H-IMIDAZOL-4-YL)ACETATE HYDROCHLORIDE
C6H9ClN2O2 (176.03525240000002)
4-oxo-4,5-dihydrothieno[3,2-c]pyridine-7-carbonitrile
2-Chloro-3-fluoro-5-nitropyridine
C5H2ClFN2O2 (175.97888340000003)
1H-1,2,3-Triazole-4-carbonyl chloride, 5-nitro- (9CI)
methyl (Z)-3,4-dihydroxy-4-methoxy-2-oxo-but-3-enoate
3-Thiophenecarbonyl chloride, 4-methoxy- (9CI)
C6H5ClO2S (175.96987800000002)
methyl 5-chlorothiophene-2-carboxylate
C6H5ClO2S (175.96987800000002)
5-Chloromuconolactone
A 5-oxo-2-furylacetic acid that is muconolactone substituted at position 5 by a chloro group.
N-Carbamoyl-D-aspartic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids The D-enantiomer N-carbamoylaspartic acid.
vitamin C
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].
2,3,4-trihydroxy-3,4-dihydro-2H-pyran-6-carboxylic acid
N-formyl-L-methioninate
The conjugate base of N-formyl-L-methionine; major species at pH 7.3.
(2Z,4E)-6-chloro-4-hydroxy-6-oxohexa-2,4-dienoic acid
(2Z,4E)-6-chloro-2-hydroxy-6-oxohexa-2,4-dienoic acid
3,4-Dihydroxy-5-[(S)-1,2-dihydroxyethyl]furan-2(5H)-one
(5R)-5-[(1S)-1,2-dihydroxyethyl]-4-hydroxyoxolane-2,3-dione
(3Z,5E)-3-chloro-6-hydroxy-2-oxohexa-3,5-dienoic acid
alpha-Mannofuranuronic acid gamma-lactone
A carbohydrate lactone obtained by intramolecular condensation of the 6-carboxy group with the 3-hydroxy group of alpha-mannofuranuronic acid.
L-BOAA
N(3)-oxalyl-L-2,3-diaminopropionic acid is an N(beta)-acyl-L-2,3-diaminopropionic acid in which the acyl group is oxalyl. It is functionally related to a propionic acid. It is a conjugate acid of a N(3)-(carboxylatoformyl)-L-2,3-diaminopropionate(1-). Dencichin is a natural product found in Lathyrus latifolius and Lathyrus sativus with data available. See also: Panax notoginseng root (part of). Dencichin is a non-protein amino acid originally extracted from Panax notoginseng, and can inhibit HIF-prolyl hydroxylase-2 (PHD-2) activity.
Vitamin_C
L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].
N-Carbamoyl-L-aspartate
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids
(R)-(2-chloro-5-oxo-2,5-dihydro-2-furyl)acetic acid
An optically active form of (2-chloro-5-oxo-2,5-dihydro-2-furyl)acetic acid having R-configuration.
N-Carbamoylaspartic acid
An N-carbamoylamino acid that is aspartic acid with one of its amino hydrogens replaced by a carbamoyl group.
N-acetyl-S-methyl-L-cysteine(1-)
An S-substituted N-acetyl-L-cysteinate that is the conjugate base of N-acetyl-S-methyl-L-cysteine resulting from the deprotonation of the carboxy group; major species at pH 7.3.