GALACTURONIC ACID (BioDeep_00000015279)
Secondary id: BioDeep_00000014471, BioDeep_00000055253, BioDeep_00000400393, BioDeep_00000859613
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C6H10O7 (194.042651)
中文名称: 聚半乳糖醛酸, 半乳糖醛酸
谱图信息:
最多检出来源 Viridiplantae(plant) 0.07%
分子结构信息
SMILES: C(=O)[C@@H]([C@H]([C@H]([C@@H](C(=O)O)O)O)O)O
InChI: InChI=1S/C6H10O7/c7-1-2(8)3(9)4(10)5(11)6(12)13/h1-5,8-11H,(H,12,13)/t2-,3+,4+,5-/m0/s1
描述信息
Acquisition and generation of the data is financially supported in part by CREST/JST.
同义名列表
数据库引用编号
28 个数据库交叉引用编号
- ChEBI: CHEBI:18024
- ChEBI: CHEBI:33830
- ChEBI: CHEBI:4153
- KEGG: C00333
- PubChem: 439215
- Metlin: METLIN45875
- Metlin: METLIN3333
- CAS: 802566-71-8
- CAS: 25990-10-7
- CAS: 37331-21-8
- CAS: 9046-38-2
- CAS: 552-12-5
- CAS: 14982-50-4
- CAS: 6294-16-2
- CAS: 685-73-4
- MoNA: HMDB0002545_ms_ms_2118
- MoNA: HMDB0002545_ms_ms_2117
- MoNA: HMDB0002545_ms_ms_2116
- MoNA: PS007307
- MoNA: PR100504
- ChEBI: CHEBI:12952
- PubChem: 3627
- KNApSAcK: C00001120
- PDB-CCD: ADA
- PDB-CCD: GTR
- 3DMET: B04672
- NIKKAJI: J82.118G
- RefMet: Galacturonic acid
分类词条
相关代谢途径
Reactome(0)
BioCyc(2)
PlantCyc(0)
代谢反应
272 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(18)
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- superpathway of microbial D-galacturonate and D-glucuronate degradation:
aldehydo-D-glucuronate ⟶ D-fructuronate
- pectin degradation II:
H2O + a methyl-esterified homogalacturonan ⟶ H+ + MeOH + a homogalacturonan
- pectin degradation I:
H2O + a methyl-esterified homogalacturonan ⟶ H+ + MeOH + a homogalacturonan
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- L-ascorbate biosynthesis V:
aldehydo-L-galactonate + H+ ⟶ H2O + L-galactono-1,4-lactone
- D-galacturonate degradation III:
NADP+ + glycerol ⟶ H+ + L-glyceraldehyde + NADPH
- UDP-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- L-ascorbate biosynthesis V:
aldehydo-L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis V:
aldehydo-L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis V:
aldehydo-D-galacturonate + H+ + NADPH ⟶ aldehydo-L-galactonate + NADP+
- L-ascorbate biosynthesis V:
aldehydo-L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- pectin degradation III:
H2O + a pectin ⟶ a pectate + methanol
- L-ascorbate biosynthesis V:
aldehydo-L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- pectin degradation II:
H2O + a pectin ⟶ a pectate + methanol
- pectin degradation III:
H2O + a pectin ⟶ a pectate + methanol
- pectin degradation II:
H2O + a pectin ⟶ a pectate + methanol
- L-ascorbate biosynthesis V:
aldehydo-L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(254)
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- homogalacturonan degradation:
a methyl-esterified homogalacturonan ⟶ 4-deoxy-L-threo-hex-4-enopyranuronate + D-galactopyranuronate + MeOH
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
D-galactopyranuronate ⟶ aldehydo-D-galacturonate
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
ATP + D-galactopyranuronate ⟶ α-D-galacturonate 1-phosphate + ADP + H+
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- UDP-α-D-galacturonate biosynthesis II (from D-galacturonate):
α-D-galacturonate 1-phosphate + H+ + UTP ⟶ UDP-α-D-galacturonate + diphosphate
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
- L-ascorbate biosynthesis VII (plants, D-galacturonate pathway):
L-galactonate + NADP+ ⟶ aldehydo-D-galacturonate + H+ + NADPH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
7 个相关的物种来源信息
- 86864 - Codonopsis pilosula: 10.1248/BPB.31.1860
- 486084 - Inga spectabilis: 10.1016/0378-8741(90)90067-4
- 71402 - Larix decidua: 10.1016/S0016-0032(44)90485-0
- 1822464 - Paraburkholderia: 10.1128/AEM.01851-20
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 98319 - Symplocos tinctoria: 10.1016/0378-8741(90)90067-4
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Camille Carton, Josip Safran, Adrien Lemaire, Jean-Marc Domon, Ward Poelmans, Tom Beeckman, Francisco Ramos-Martín, Viviane Antonietti, Pascal Sonnet, Anissa Lounès-Hadj Sahraoui, Valérie Lefebvre, Jérôme Pelloux, Corinne Pau-Roblot. Structural and biochemical characterization of SmoPG1, an exo-polygalacturonase from Selaginella moellendorffii.
International journal of biological macromolecules.
2024 Jun; 269(Pt 2):131918. doi:
10.1016/j.ijbiomac.2024.131918
. [PMID: 38697418] - Junjie Wang, Enhui Liao, Zixuan Ren, Qiong Wang, Zenglai Xu, Shufang Wu, Chaoguang Yu, Yunlong Yin. Extraction and In Vitro Skincare Effect Assessment of Polysaccharides Extract from the Roots of Abelmoschus manihot (L.).
Molecules (Basel, Switzerland).
2024 May; 29(9):. doi:
10.3390/molecules29092109
. [PMID: 38731598] - Hongyu Li, Zheng Li, Pengwang Wang, Zheng Liu, Lingzhuo An, Xuemin Zhang, Zhouyi Xie, Yingping Wang, Xia Li, Wenyuan Gao. Evaluation of citrus pectin extraction methods: Synergistic enhancement of pectin's antioxidant capacity and gel properties through combined use of organic acids, ultrasonication, and microwaves.
International journal of biological macromolecules.
2024 May; 266(Pt 1):131164. doi:
10.1016/j.ijbiomac.2024.131164
. [PMID: 38547940] - Yangyang Yu, Ping Lu, Yongfeng Yang, Huifu Ji, Hang Zhou, Siyuan Chen, Yao Qiu, Hongli Chen. Differences in physicochemical properties of pectin extracted from pomelo peel with different extraction techniques.
Scientific reports.
2024 04; 14(1):9182. doi:
10.1038/s41598-024-59760-7
. [PMID: 38649422] - Qian Yang, Xuelian Shen, Junxi Zhao, Aga Er-Bu, Xiaoxia Liang, Changliang He, Lizi Yin, Funeng Xu, Haohuan Li, Huaqiao Tang, Yuping Fu, Cheng Lv. Onosma glomeratum Y. L. Liu polysaccharide alleviates LPS-induced pulmonary inflammation via NF-κB signal pathway.
International journal of biological macromolecules.
2024 Apr; 263(Pt 2):130452. doi:
10.1016/j.ijbiomac.2024.130452
. [PMID: 38417755] - Marietheres Kleuter, Yafei Yu, Francesco Pancaldi, Mayra Nagtzaam, Atze Jan van der Goot, Luisa M Trindade. Cell wall as a barrier for protein extraction from tomato leaves: A biochemical study.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108495. doi:
10.1016/j.plaphy.2024.108495
. [PMID: 38452451] - Jawad Ahmed, Yasar Sajjad, Aasia Latif, Mohammad Saeed Lodhi, Muhammad Huzafa, Chen Situ, Raza Ahmad, Muhammad Maroof Shah, Amjad Hassan. Genome-wide identification and characterization of wall-associated kinases, molecular docking and polysaccharide elicitation of monoterpenoid indole alkaloids in micro-propagated Catharanthus roseus.
Journal of plant research.
2024 Jan; 137(1):125-142. doi:
10.1007/s10265-023-01504-1
. [PMID: 37962734] - Rachel A Kaminsky, Peter M Reid, Eric Altermann, Nikki Kenters, William J Kelly, Samantha J Noel, Graeme T Attwood, Peter H Janssen. Rumen Lachnospiraceae isolate NK3A20 exhibits metabolic flexibility in response to substrate and coculture with a methanogen.
Applied and environmental microbiology.
2023 Oct; ?(?):e0063423. doi:
10.1128/aem.00634-23
. [PMID: 37800930] - Meng Ye, Qi Feng, Ying Jiang, Feng Wang, Xuexia Shi, Xiaobing Yang, Xiangdong Gao, Wei Liu. Structure Characterization and Anti-Rheumatoid Arthritis Activity of a Polysaccharide from Notopterygium incisum.
Molecular nutrition & food research.
2023 08; 67(15):e2200713. doi:
10.1002/mnfr.202200713
. [PMID: 37143438] - Qiuxia Meng, Yu Niu, Rongrong Wang, Wei Niu, Lizhen Zhang. Structural Characterization and Immunobiological Activity of Polysaccharides from Astragalus Oyster Mushroom.
Molecules (Basel, Switzerland).
2023 Jul; 28(13):. doi:
10.3390/molecules28135280
. [PMID: 37446941] - Qiang Wu, Aga Er-Bu, Xiaoxia Liang, Changliang He, Lizi Yin, Funeng Xu, Yuanfeng Zou, Zhongqiong Yin, Guizhou Yue, Lixia Li, Xu Song, Huaqiao Tang, Wei Zhang, Cheng Lv, Bo Jing, Geng Sang, Car Rangnanjia. Isolation, structure identification, and immunostimulatory effects in vitro and in vivo of polysaccharides from Onosma hookeri Clarke var. longiforum Duthie.
Journal of the science of food and agriculture.
2023 Jan; 103(1):328-338. doi:
10.1002/jsfa.12145
. [PMID: 35871477] - Qiang Zhang, Lianxiang Lu, Yanfei Zheng, Chengrong Qin, Yuexin Chen, Zhongjie Zhou. Isolation, Purification, and Antioxidant Activities of Polysaccharides from Choerospondias axillaris Leaves.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27248881
. [PMID: 36558014] - William J Nicolas, Florian Fäßler, Przemysław Dutka, Florian K M Schur, Grant Jensen, Elliot Meyerowitz. Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks.
Current biology : CB.
2022 Jun; 32(11):2375-2389.e6. doi:
10.1016/j.cub.2022.04.024
. [PMID: 35508170] - Juan Du, Charles T Anderson, Chaowen Xiao. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development.
Nature plants.
2022 04; 8(4):332-340. doi:
10.1038/s41477-022-01120-2
. [PMID: 35411046] - Yu-Cheng Yeh, Lih-Shiuh Lai. Effect of Extraction Procedures with Ultrasound and Cellulolytic Enzymes on the Structural and Functional Properties of Citrus grandis Osbeck Seed Mucilage.
Molecules (Basel, Switzerland).
2022 Jan; 27(3):. doi:
10.3390/molecules27030612
. [PMID: 35163877] - Andreea Perpelea, Andy Wiranata Wijaya, Luís C Martins, Dorthe Rippert, Mathias Klein, Angel Angelov, Kaisa Peltonen, Attila Teleki, Wolfgang Liebl, Peter Richard, Johan M Thevelein, Ralf Takors, Isabel Sá-Correia, Elke Nevoigt. Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol.
Metabolic engineering.
2022 01; 69(?):1-14. doi:
10.1016/j.ymben.2021.10.001
. [PMID: 34648971] - Yanguo Xu, Min Yang, Rong Yin, Luotao Wang, Lifen Luo, Bianxian Zi, Haijiao Liu, Huichuan Huang, Yixiang Liu, Xiahong He, Shusheng Zhu. Autotoxin Rg1 Induces Degradation of Root Cell Walls and Aggravates Root Rot by Modifying the Rhizospheric Microbiome.
Microbiology spectrum.
2021 12; 9(3):e0167921. doi:
10.1128/spectrum.01679-21
. [PMID: 34908454] - Tianpeng Zhang, Wenxiu Zhang, Daxing Li, Fengli Zhou, Xiao Chen, Chongyang Li, Sang Yu, Marian Brestic, Yang Liu, Xinghong Yang. Glycinebetaine: a versatile protectant to improve rice performance against aluminium stress by regulating aluminium uptake and translocation.
Plant cell reports.
2021 Dec; 40(12):2397-2407. doi:
10.1007/s00299-021-02780-8
. [PMID: 34524480] - Maria Dimopoulou, Katerina Alba, Ian M Sims, Vassilis Kontogiorgos. Structure and rheology of pectic polysaccharides from baobab fruit and leaves.
Carbohydrate polymers.
2021 Dec; 273(?):118540. doi:
10.1016/j.carbpol.2021.118540
. [PMID: 34560952] - José M Cruz-Rubio, Monika Mueller, Helmut Viernstein, Renate Loeppert, Werner Praznik. Prebiotic potential and chemical characterization of the poly and oligosaccharides present in the mucilage of Opuntia ficus-indica and Opuntia joconostle.
Food chemistry.
2021 Nov; 362(?):130167. doi:
10.1016/j.foodchem.2021.130167
. [PMID: 34087714] - Yuanyuan Zhao, Jinfeng Bi, Jianyong Yi, Xinye Wu, Youchuan Ma, Ruiping Li. Pectin and homogalacturonan with small molecular mass modulate microbial community and generate high SCFAs via in vitro gut fermentation.
Carbohydrate polymers.
2021 Oct; 269(?):118326. doi:
10.1016/j.carbpol.2021.118326
. [PMID: 34294338] - Jiacai Wu, Chanyi Li, Lisha Bai, Jian Wu, Rui Bo, Mingzhu Ye, Li Huang, Hongyuan Chen, Wen Rui. Structural differences of polysaccharides from Astragalus before and after honey processing and their effects on colitis mice.
International journal of biological macromolecules.
2021 Jul; 182(?):815-824. doi:
10.1016/j.ijbiomac.2021.04.055
. [PMID: 33857512] - Sean M Bulley, Janine M Cooney, William Laing. Elevating Ascorbate in Arabidopsis Stimulates the Production of Abscisic Acid, Phaseic Acid, and to a Lesser Extent Auxin (IAA) and Jasmonates, Resulting in Increased Expression of DHAR1 and Multiple Transcription Factors Associated with Abiotic Stress Tolerance.
International journal of molecular sciences.
2021 Jun; 22(13):. doi:
10.3390/ijms22136743
. [PMID: 34201662] - Ningxian Yang, Yang Li, Feifei Xing, Xiaohong Wang, Xue Li, Lin Li, Jiao Yang, Yanqiu Wang, Mingsheng Zhang. Composition and structural characterization of pectin in micropropagated and conventional plants of Premma puberula Pamp.
Carbohydrate polymers.
2021 May; 260(?):117711. doi:
10.1016/j.carbpol.2021.117711
. [PMID: 33712120] - Farinaz Golbargi, Seyed Mohammad Taghi Gharibzahedi, Alaleh Zoghi, Mehrdad Mohammadi, Reza Hashemifesharaki. Microwave-assisted extraction of arabinan-rich pectic polysaccharides from melon peels: Optimization, purification, bioactivity, and techno-functionality.
Carbohydrate polymers.
2021 Mar; 256(?):117522. doi:
10.1016/j.carbpol.2020.117522
. [PMID: 33483043] - Dong Yu-Hao, Chen Chun, Huang Qiang, Fu Xiong. Study on a novel spherical polysaccharide from Fructus Mori with good antioxidant activity.
Carbohydrate polymers.
2021 Mar; 256(?):117516. doi:
10.1016/j.carbpol.2020.117516
. [PMID: 33483037] - Mengqi Wu, Wei Li, Yilin Zhang, Lei Shi, Zhizhen Xu, Wei Xia, Wenqing Zhang. Structure characteristics, hypoglycemic and immunomodulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste.
Carbohydrate polymers.
2021 Feb; 253(?):117190. doi:
10.1016/j.carbpol.2020.117190
. [PMID: 33278967] - Yu-Yao Wu, Zi-Shao Zhong, Zhen-Hao Ye, Wang Zhang, Gui-Hua He, Yi-Feng Zheng, Sui-Ping Huang. D-galacturonic acid ameliorates the intestinal mucosal permeability and inflammation of functional dyspepsia in rats.
Annals of palliative medicine.
2021 Jan; 10(1):538-548. doi:
10.21037/apm-20-2420
. [PMID: 33440961] - Nagina Rafique, Saiqa Bashir, Muhammad Zubair Khan, Imran Hayat, Willium Orts, Dominic W S Wong. Metabolic engineering of Bacillus subtilis with an endopolygalacturonase gene isolated from Pectobacterium. carotovorum; a plant pathogenic bacterial strain.
PloS one.
2021; 16(12):e0256562. doi:
10.1371/journal.pone.0256562
. [PMID: 34936645] - Yan Li, Yang Deng, Zhen Li, Zhuqing Liu, Meizi Piao, Xiaoqian Cui. Composition, physicochemical properties, and anti-fatigue activity of water-soluble okra (Abelmoschus esculentus) stem pectins.
International journal of biological macromolecules.
2020 Dec; 165(Pt B):2630-2639. doi:
10.1016/j.ijbiomac.2020.10.167
. [PMID: 33115649] - Anouar Feriani, Meriam Tir, Mariem Hamed, Assaâd Sila, Saber Nahdi, Saleh Alwasel, Abdel Halim Harrath, Nizar Tlili. Multidirectional insights on polysaccharides from Schinus terebinthifolius and Schinus molle fruits: Physicochemical and functional profiles, in vitro antioxidant, anti-genotoxicity, antidiabetic, and antihemolytic capacities, and in vivo anti-inflammatory and anti-nociceptive properties.
International journal of biological macromolecules.
2020 Dec; 165(Pt B):2576-2587. doi:
10.1016/j.ijbiomac.2020.10.123
. [PMID: 33096174] - Wei Wei, Nickisha Pierre-Pierre, Hao Peng, Vishnutej Ellur, George J Vandemark, Weidong Chen. The D-galacturonic acid catabolic pathway genes differentially regulate virulence and salinity response in Sclerotinia sclerotiorum.
Fungal genetics and biology : FG & B.
2020 12; 145(?):103482. doi:
10.1016/j.fgb.2020.103482
. [PMID: 33137429] - Faramarz Khodaiyan, Karim Parastouei. Co-optimization of pectin and polyphenols extraction from black mulberry pomace using an eco-friendly technique: Simultaneous recovery and characterization of products.
International journal of biological macromolecules.
2020 Dec; 164(?):1025-1036. doi:
10.1016/j.ijbiomac.2020.07.107
. [PMID: 32679326] - Jianjun Wu, Yongbin Xu, Juan Su, Bo Zhu, Siqi Wang, Kaohua Liu, Huijun Wang, Songshan Shi, Qiaoyan Zhang, Luping Qin, Shunchun Wang. Roles of gut microbiota and metabolites in a homogalacturonan-type pectic polysaccharide from Ficus pumila Linn. fruits mediated amelioration of obesity.
Carbohydrate polymers.
2020 Nov; 248(?):116780. doi:
10.1016/j.carbpol.2020.116780
. [PMID: 32919569] - Adam Choma, Katarzyna Zamłyńska, Andrzej Mazur, Anna Pastuszka, Zbigniew Kaczyński, Iwona Komaniecka. Lipid A from Oligotropha carboxidovorans Lipopolysaccharide That Contains Two Galacturonic Acid Residues in the Backbone and Malic Acid A Tertiary Acyl Substituent.
International journal of molecular sciences.
2020 Oct; 21(21):. doi:
10.3390/ijms21217991
. [PMID: 33121154] - Wenyao Xue, Yue Gao, Qianwen Li, Qibin Lu, Zhengying Bian, Lei Tang, Yu Zeng, Cong Chen, Wei Guo. Immunomodulatory activity-guided isolation and characterization of a novel polysaccharide from Atractylodis macrocephalae Koidz.
International journal of biological macromolecules.
2020 Oct; 161(?):514-524. doi:
10.1016/j.ijbiomac.2020.06.003
. [PMID: 32504713] - Fanke Zeng, Wenbo Chen, Ping He, Qiping Zhan, Qian Wang, Hui Wu, Mengmeng Zhang. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels.
Carbohydrate polymers.
2020 Oct; 246(?):116551. doi:
10.1016/j.carbpol.2020.116551
. [PMID: 32747236] - Jessica Sofía Ayala-López, Víctor Inocencio Pacheco-Contreras, Norma Francenia Santos-Sánchez, Beatriz Hernández-Carlos, Gabriela F Lara-Ruiz, Raúl Salas-Coronado. Characterization of pectin extracted under mild conditions from tempesquistle (Sideroxylon palmeri) fruit at two maturity stages.
Acta scientiarum polonorum. Technologia alimentaria.
2020 Jul; 19(3):347-357. doi:
10.17306/j.afs.0850
. [PMID: 32978916] - Mariem Itaimi Dammak, Zeineb Mzoughi, Ibtissem Chakroun, Hedi Ben Mansour, Didier Le Cerf, Hatem Majdoub. Optimization of polysaccharides extraction from quince peels: partial characterization, antioxidant and antiproliferative properties.
Natural product research.
2020 May; 34(10):1470-1474. doi:
10.1080/14786419.2018.1514403
. [PMID: 30445860] - Hexiang Zhang, Jiangchao Zhao, Hongmei Shang, Yang Guo, Shilun Chen. Extraction, purification, hypoglycemic and antioxidant activities of red clover (Trifolium pratense L.) polysaccharides.
International journal of biological macromolecules.
2020 Apr; 148(?):750-760. doi:
10.1016/j.ijbiomac.2020.01.194
. [PMID: 31978472] - Ruben Parra, Miguel A Paredes, Juana Labrador, Cláudia Nunes, Manuel A Coimbra, Nieves Fernandez-Garcia, Enrique Olmos, Mercedes Gallardo, Maria C Gomez-Jimenez. Cell Wall Composition and Ultrastructural Immunolocalization of Pectin and Arabinogalactan Protein during Olea europaea L. Fruit Abscission.
Plant & cell physiology.
2020 Apr; 61(4):814-825. doi:
10.1093/pcp/pcaa009
. [PMID: 32016408] - Jiangyan Huo, Yan Lu, Long Xia, Daofeng Chen. Structural characterization and anticomplement activities of three acidic homogeneous polysaccharides from Artemisia annua.
Journal of ethnopharmacology.
2020 Jan; 247(?):112281. doi:
10.1016/j.jep.2019.112281
. [PMID: 31600559] - Maria Dimopoulou, Katerina Alba, Grant Campbell, Vassilis Kontogiorgos. Pectin recovery and characterization from lemon juice waste streams.
Journal of the science of food and agriculture.
2019 Nov; 99(14):6191-6198. doi:
10.1002/jsfa.9891
. [PMID: 31250441] - Robert B Peterson, Scott A Rankin, Shinya Ikeda. Short communication: Stabilization of milk proteins at pH 5.5 using pectic polysaccharides derived from potato tubers.
Journal of dairy science.
2019 Oct; 102(10):8691-8695. doi:
10.3168/jds.2019-16393
. [PMID: 31421885] - Aline Voxeur, Olivier Habrylo, Stéphanie Guénin, Fabien Miart, Marie-Christine Soulié, Christophe Rihouey, Corinne Pau-Roblot, Jean-Marc Domon, Laurent Gutierrez, Jérôme Pelloux, Grégory Mouille, Mathilde Fagard, Herman Höfte, Samantha Vernhettes. Oligogalacturonide production upon Arabidopsis thaliana-Botrytis cinerea interaction.
Proceedings of the National Academy of Sciences of the United States of America.
2019 09; 116(39):19743-19752. doi:
10.1073/pnas.1900317116
. [PMID: 31501325] - Jin-Shu Yang, Tai-Hua Mu, Meng-Mei Ma. Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization.
Food chemistry.
2019 Aug; 289(?):351-359. doi:
10.1016/j.foodchem.2019.03.027
. [PMID: 30955623] - Meihua Miao, Xiaozhong Li, Qin Wang, Yunfen Zhu, Yanyan Cui, Xuejun Shao. Association between anti-α-1,4-D-polygalacturonic acid antibodies and Henoch-Schönlein purpura in children.
The Journal of international medical research.
2019 Jun; 47(6):2545-2554. doi:
10.1177/0300060519843728
. [PMID: 31068035] - Aurore Labourel, Arnaud Baslé, Jose Munoz-Munoz, Didier Ndeh, Simon Booth, Sergey A Nepogodiev, Robert A Field, Alan Cartmell. Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan II.
The Journal of biological chemistry.
2019 05; 294(19):7711-7721. doi:
10.1074/jbc.ra118.006626
. [PMID: 30877196] - Bruna Bárbara Valero Guandalini, Naira Poerner Rodrigues, Ligia Damasceno Ferreira Marczak. Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound.
Food research international (Ottawa, Ont.).
2019 05; 119(?):455-461. doi:
10.1016/j.foodres.2018.12.011
. [PMID: 30884677] - Gongji Liu, Xiang Li, Shoulei Yan, Jie Li. The ratio of chelate-soluble fraction to alcohol insoluble residue is a major influencing factor on the texture of lotus rhizomes after cooking.
Food chemistry.
2019 May; 279(?):373-378. doi:
10.1016/j.foodchem.2018.11.145
. [PMID: 30611503] - Pattrathip Rodsamran, Rungsinee Sothornvit. Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method.
Food chemistry.
2019 Apr; 278(?):364-372. doi:
10.1016/j.foodchem.2018.11.067
. [PMID: 30583385] - Seyed Saeid Hosseini, Faramarz Khodaiyan, Milad Kazemi, Zahra Najari. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method.
International journal of biological macromolecules.
2019 Mar; 125(?):621-629. doi:
10.1016/j.ijbiomac.2018.12.096
. [PMID: 30543886] - Meng Wang, Zongchang Xu, Rana Imtiaz Ahmed, Yiping Wang, Ruibo Hu, Gongke Zhou, Yingzhen Kong. Tubby-like Protein 2 regulates homogalacturonan biosynthesis in Arabidopsis seed coat mucilage.
Plant molecular biology.
2019 Mar; 99(4-5):421-436. doi:
10.1007/s11103-019-00827-9
. [PMID: 30707395] - Chia-Fang Chiang, Lih-Shiuh Lai. Effect of enzyme-assisted extraction on the physicochemical properties of mucilage from the fronds of Asplenium australasicum (J. Sm.) Hook.
International journal of biological macromolecules.
2019 Mar; 124(?):346-353. doi:
10.1016/j.ijbiomac.2018.11.181
. [PMID: 30465842] - Claire M Chigwedere, Cornelius M Nkonkola, Shrijana Rai, Clare Kyomugasho, Zahra Jamsazzadeh Kermani, Andrea Pallares Pallares, Ann M Van Loey, Tara Grauwet, Marc E Hendrickx. Cotyledon pectin molecular interconversions explain pectin solubilization during cooking of common beans (Phaseolus vulgaris).
Food research international (Ottawa, Ont.).
2019 02; 116(?):462-470. doi:
10.1016/j.foodres.2018.08.062
. [PMID: 30716969] - Young-Ran Song, Ah-Ram Han, Tae-Gyu Lim, Ji-Hyun Kang, Hee-Do Hong. Discrimination of Structural and Immunological Features of Polysaccharides from Persimmon Leaves at Different Maturity Stages.
Molecules (Basel, Switzerland).
2019 Jan; 24(2):. doi:
10.3390/molecules24020356
. [PMID: 30669480] - Yuqing Cai, Peng Chen, Cuiyun Wu, Jinyou Duan, Hongjin Bai. Sulfated modification and biological activities of polysaccharides derived from Zizyphus jujuba cv. Jinchangzao.
International journal of biological macromolecules.
2018 Dec; 120(Pt A):1149-1155. doi:
10.1016/j.ijbiomac.2018.08.141
. [PMID: 30171958] - Ryan J Protzko, Luke N Latimer, Ze Martinho, Elise de Reus, Tanja Seibert, J Philipp Benz, John E Dueber. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste.
Nature communications.
2018 11; 9(1):5059. doi:
10.1038/s41467-018-07589-w
. [PMID: 30498222] - Mariem Itaimi Dammak, Ibtissem Chakroun, Zeineb Mzoughi, Sawsen Amamou, Hedi Ben Mansour, Didier Le Cerf, Hatem Majdoub. Characterization of polysaccharides from Prunus amygdalus peels: Antioxidant and antiproliferative activities.
International journal of biological macromolecules.
2018 Nov; 119(?):198-206. doi:
10.1016/j.ijbiomac.2018.07.125
. [PMID: 30036629] - Sumudu Warnakulasuriya, Prasanth K S Pillai, Andrea K Stone, Michael T Nickerson. Effect of the degree of esterification and blockiness on the complex coacervation of pea protein isolate and commercial pectic polysaccharides.
Food chemistry.
2018 Oct; 264(?):180-188. doi:
10.1016/j.foodchem.2018.05.036
. [PMID: 29853364] - Jinping Cao, Dandan Tang, Yue Wang, Xian Li, Li Hong, Chongde Sun. Characteristics and immune-enhancing activity of pectic polysaccharides from sweet cherry (Prunus avium).
Food chemistry.
2018 Jul; 254(?):47-54. doi:
10.1016/j.foodchem.2018.01.145
. [PMID: 29548470] - Enzo L La Cava, Esteban Gerbino, Sonia C Sgroppo, Andrea Gómez-Zavaglia. Characterization of Pectins Extracted from Different Varieties of Pink/Red and White Grapefruits [Citrus Paradisi (Macf.)] by Thermal Treatment and Thermosonication.
Journal of food science.
2018 Jun; 83(6):1613-1621. doi:
10.1111/1750-3841.14183
. [PMID: 29786856] - Ruyu Yao, Chao Huang, Xingfu Chen, Zhongqiong Yin, Yuping Fu, Lixia Li, Bin Feng, Xu Song, Changliang He, Guizhou Yue, Bo Jing, Cheng Lv, Gang Su, Gang Ye, Yuanfeng Zou. Two complement fixing pectic polysaccharides from pedicel of Lycium barbarum L. promote cellular antioxidant defense.
International journal of biological macromolecules.
2018 Jun; 112(?):356-363. doi:
10.1016/j.ijbiomac.2018.01.207
. [PMID: 29409772] - Xing Ding, Jinhua Li, Yu Pan, Yue Zhang, Lei Ni, Yaling Wang, Xingguo Zhang. Genome-Wide Identification and Expression Analysis of the UGlcAE Gene Family in Tomato.
International journal of molecular sciences.
2018 May; 19(6):. doi:
10.3390/ijms19061583
. [PMID: 29861481] - Ian M Sims, Alan M Smith, Gordon A Morris, Muhammad U Ghori, Susan M Carnachan. Structural and rheological studies of a polysaccharide mucilage from lacebark leaves (Hoheria populnea A. Cunn.).
International journal of biological macromolecules.
2018 May; 111(?):839-847. doi:
10.1016/j.ijbiomac.2017.12.142
. [PMID: 29292146] - Ana S Luis, Jonathon Briggs, Xiaoyang Zhang, Benjamin Farnell, Didier Ndeh, Aurore Labourel, Arnaud Baslé, Alan Cartmell, Nicolas Terrapon, Katherine Stott, Elisabeth C Lowe, Richard McLean, Kaitlyn Shearer, Julia Schückel, Immacolata Venditto, Marie-Christine Ralet, Bernard Henrissat, Eric C Martens, Steven C Mosimann, D Wade Abbott, Harry J Gilbert. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides.
Nature microbiology.
2018 02; 3(2):210-219. doi:
10.1038/s41564-017-0079-1
. [PMID: 29255254] - Camila Silva Tamiello, Georgia Erdmann do Nascimento, Marcello Iacomini, Lucimara M C Cordeiro. Arabinogalactan from edible jambo fruit induces different responses on cytokine secretion by THP-1 macrophages in the absence and presence of proinflammatory stimulus.
International journal of biological macromolecules.
2018 Feb; 107(Pt A):35-41. doi:
10.1016/j.ijbiomac.2017.08.148
. [PMID: 28860058] - Qin Liu, Jianping Fang, Peipei Wang, Zhenyun Du, Yanling Li, Shunchun Wang, Kan Ding. Characterization of a pectin from Lonicera japonica Thunb. and its inhibition effect on Aβ42 aggregation and promotion of neuritogenesis.
International journal of biological macromolecules.
2018 Feb; 107(Pt A):112-120. doi:
10.1016/j.ijbiomac.2017.08.154
. [PMID: 28863894] - Jawhar Hafsa, Khaoula Mkadmini Hammi, Didier Le Cerf, Khalifa Limem, Hatem Majdoub, Bassem Charfeddine. Characterization, antioxidant and antiglycation properties of polysaccharides extracted from the medicinal halophyte Carpobrotus edulis L.
International journal of biological macromolecules.
2018 Feb; 107(Pt A):833-842. doi:
10.1016/j.ijbiomac.2017.09.046
. [PMID: 28923563] - Jinlong Chen, Wensheng Pang, Yongjun Kan, Li Zhao, Zhaodong He, Wentao Shi, Bin Yan, Hong Chen, Juan Hu. Structure of a pectic polysaccharide from Pseudostellaria heterophylla and stimulating insulin secretion of INS-1 cell and distributing in rats by oral.
International journal of biological macromolecules.
2018 Jan; 106(?):456-463. doi:
10.1016/j.ijbiomac.2017.08.034
. [PMID: 28797815] - Makoto Urai, Keiko Kataoka, Satoshi Nishida, Kazuhisa Sekimizu. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.
Drug discoveries & therapeutics.
2017 Nov; 11(5):230-237. doi:
10.5582/ddt.2017.01044
. [PMID: 29021502] - Pengfei Wang, Xinshi Chen, Cameron Goldbeck, Eric Chung, Byung-Ho Kang. A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell.
The Plant journal : for cell and molecular biology.
2017 Nov; 92(4):596-610. doi:
10.1111/tpj.13704
. [PMID: 28865155] - Katarzyna Zamlynska, Iwona Komaniecka, Kamil Zebracki, Andrzej Mazur, Anna Sroka-Bartnicka, Adam Choma. Studies on lipid A isolated from Phyllobacterium trifolii PETP02T lipopolysaccharide.
Antonie van Leeuwenhoek.
2017 Nov; 110(11):1413-1433. doi:
10.1007/s10482-017-0872-0
. [PMID: 28409238] - Manisha Buriuli, Wasupalli Geeta Kumari, Devendra Verma. Evaluation of hemostatic effect of polyelectrolyte complex-based dressings.
Journal of biomaterials applications.
2017 Nov; 32(5):638-647. doi:
10.1177/0885328217735956
. [PMID: 28990448] - Joanna E Kowalczyk, Ronnie J M Lubbers, Mao Peng, Evy Battaglia, Jaap Visser, Ronald P de Vries. Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin.
Scientific reports.
2017 09; 7(1):12356. doi:
10.1038/s41598-017-12362-y
. [PMID: 28955038] - Pyae Phyo, Tuo Wang, Chaowen Xiao, Charles T Anderson, Mei Hong. Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR.
Biomacromolecules.
2017 Sep; 18(9):2937-2950. doi:
10.1021/acs.biomac.7b00888
. [PMID: 28783321] - Liangliang Cai, Dongwei Wan, Fanglian Yi, Libiao Luan. Purification, Preliminary Characterization and Hepatoprotective Effects of Polysaccharides from Dandelion Root.
Molecules (Basel, Switzerland).
2017 Aug; 22(9):. doi:
10.3390/molecules22091409
. [PMID: 28841174] - Hui Gao, Yinghui Zhang, Wanlei Wang, Keke Zhao, Chunmei Liu, Lin Bai, Rui Li, Yi Guo. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development.
Plant physiology.
2017 01; 173(1):219-239. doi:
10.1104/pp.16.01719
. [PMID: 27872247] - Jasper Sloothaak, Dorett I Odoni, Vitor A P Martins Dos Santos, Peter J Schaap, Juan Antonio Tamayo-Ramos. Identification of a Novel L-rhamnose Uptake Transporter in the Filamentous Fungus Aspergillus niger.
PLoS genetics.
2016 Dec; 12(12):e1006468. doi:
10.1371/journal.pgen.1006468
. [PMID: 27984587] - Giang Thanh Thi Ho, Yuan-Feng Zou, Helle Wangensteen, Hilde Barsett. RG-I regions from elderflower pectins substituted on GalA are strong immunomodulators.
International journal of biological macromolecules.
2016 Nov; 92(?):731-738. doi:
10.1016/j.ijbiomac.2016.07.090
. [PMID: 27475233] - Taketo Kawarai, Naoki Narisawa, Saori Yoneda, Yoshiaki Tsutsumi, Jun Ishikawa, Yasutaka Hoshino, Hidenobu Senpuku. Inhibition of Streptococcus mutans biofilm formation using extracts from Assam tea compared to green tea.
Archives of oral biology.
2016 Aug; 68(?):73-82. doi:
10.1016/j.archoralbio.2016.04.002
. [PMID: 27107380] - Qiu-Lian Luo, Zhuan-Hui Tang, Xue-Feng Zhang, Yong-Hong Zhong, Su-Zhi Yao, Li-Sheng Wang, Cui-Wu Lin, Xuan Luo. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale.
International journal of biological macromolecules.
2016 Aug; 89(?):219-27. doi:
10.1016/j.ijbiomac.2016.04.067
. [PMID: 27131730] - Agnieszka Wikiera, Magdalena Mika, Anna Starzyńska-Janiszewska, Bożena Stodolak. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace.
Carbohydrate polymers.
2016 May; 142(?):199-205. doi:
10.1016/j.carbpol.2016.01.063
. [PMID: 26917391] - Marie-Christine Ralet, Marie-Jeanne Crépeau, Jacqueline Vigouroux, Joseph Tran, Adeline Berger, Christine Sallé, Fabienne Granier, Lucy Botran, Helen M North. Xylans Provide the Structural Driving Force for Mucilage Adhesion to the Arabidopsis Seed Coat.
Plant physiology.
2016 05; 171(1):165-78. doi:
10.1104/pp.16.00211
. [PMID: 26979331] - Lisha Zhang, Ronnie J M Lubbers, Adeline Simon, Joost H M Stassen, Pablo R Vargas Ribera, Muriel Viaud, Jan A L van Kan. A novel Zn2 Cys6 transcription factor BcGaaR regulates D-galacturonic acid utilization in Botrytis cinerea.
Molecular microbiology.
2016 Apr; 100(2):247-62. doi:
10.1111/mmi.13314
. [PMID: 26691528] - Amjad Iqbal, Janice G Miller, Lorna Murray, Ian H Sadler, Stephen C Fry. The pectic disaccharides lepidimoic acid and β-d-xylopyranosyl-(1→3)-d-galacturonic acid occur in cress-seed exudate but lack allelochemical activity.
Annals of botany.
2016 Apr; 117(4):607-23. doi:
10.1093/aob/mcw008
. [PMID: 26957370] - Jinlei Zhao, Andrew N Binns. Involvement of Agrobacterium tumefaciens Galacturonate Tripartite ATP-Independent Periplasmic (TRAP) Transporter GaaPQM in Virulence Gene Expression.
Applied and environmental microbiology.
2016 02; 82(4):1136-1146. doi:
10.1128/aem.02891-15
. [PMID: 26637603] - Gerit Bethke, Amanda Thao, Guangyan Xiong, Baohua Li, Nicole E Soltis, Noriyuki Hatsugai, Rachel A Hillmer, Fumiaki Katagiri, Daniel J Kliebenstein, Markus Pauly, Jane Glazebrook. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana.
The Plant cell.
2016 Feb; 28(2):537-56. doi:
10.1105/tpc.15.00404
. [PMID: 26813622] - Seyed Saeid Hosseini, Faramarz Khodaiyan, Mohammad Saeid Yarmand. Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties.
International journal of biological macromolecules.
2016 Jan; 82(?):920-6. doi:
10.1016/j.ijbiomac.2015.11.007
. [PMID: 26549440] - Nai-dong Chen, Yun-fei Meng, Hou-jun Yao, Cai-yun Cao, Chen Chen, Jun Li. [Study on Monosaccharide Compositions of Polysaccharide in Dendrobium Stems of Different Resources by PMP-HPCE].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Aug; 38(8):1607-10. doi:
"
. [PMID: 26983229] - Manuel Benedetti, Daniela Pontiggia, Sara Raggi, Zhenyu Cheng, Flavio Scaloni, Simone Ferrari, Frederick M Ausubel, Felice Cervone, Giulia De Lorenzo. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.
Proceedings of the National Academy of Sciences of the United States of America.
2015 Apr; 112(17):5533-8. doi:
10.1073/pnas.1504154112
. [PMID: 25870275] - Joosu Kuivanen, Merja Penttilä, Peter Richard. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
Microbial cell factories.
2015 Jan; 14(?):2. doi:
10.1186/s12934-014-0184-2
. [PMID: 25566698] - Haobin Hu, Haipeng Liang, Yun Wu. Isolation, purification and structural characterization of polysaccharide from Acanthopanax brachypus.
Carbohydrate polymers.
2015; 127(?):94-100. doi:
10.1016/j.carbpol.2015.03.066
. [PMID: 25965461] - Yuan-Feng Zou, Xing-Fu Chen, Karl Egil Malterud, Frode Rise, Hilde Barsett, Kari Tvete Inngjerdingen, Terje Einar Michaelsen, Berit Smestad Paulsen. Structural features and complement fixing activity of polysaccharides from Codonopsis pilosula Nannf. var. modesta L.T.Shen roots.
Carbohydrate polymers.
2014 Nov; 113(?):420-9. doi:
10.1016/j.carbpol.2014.07.036
. [PMID: 25256503] - Fang-Fang Min, Jie-Lun Hu, Shao-Ping Nie, Jian-Hua Xie, Ming-Yong Xie. In vitro fermentation of the polysaccharides from Cyclocarya paliurus leaves by human fecal inoculums.
Carbohydrate polymers.
2014 Nov; 112(?):563-8. doi:
10.1016/j.carbpol.2014.06.027
. [PMID: 25129782] - Lisha Zhang, Chenlei Hua, Joost H M Stassen, Sayantani Chatterjee, Maxim Cornelissen, Jan A L van Kan. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative d-galacturonate transporters.
Fungal genetics and biology : FG & B.
2014 Nov; 72(?):182-191. doi:
10.1016/j.fgb.2013.10.002
. [PMID: 24140151] - Amancio de Souza, Philip A Hull, Sascha Gille, Markus Pauly. Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants.
Planta.
2014 Nov; 240(5):1123-38. doi:
10.1007/s00425-014-2139-6
. [PMID: 25115560] - Yan Zhao, Xingbin Yang, Daoyuan Ren, Dongying Wang, Yang Xuan. Preventive effects of jujube polysaccharides on fructose-induced insulin resistance and dyslipidemia in mice.
Food & function.
2014 Aug; 5(8):1771-8. doi:
10.1039/c3fo60707k
. [PMID: 24906476] - Sara Carillo, Giuseppina Pieretti, Emiliano Bedini, Michelangelo Parrilli, Rosa Lanzetta, Maria Michela Corsaro. Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1.
Carbohydrate research.
2014 Mar; 388(?):73-80. doi:
10.1016/j.carres.2013.10.008
. [PMID: 24632212]