Caldarchaeol (BioDeep_00000009635)

 

Secondary id: BioDeep_00001870857


代谢物信息卡片


[(7S,11S,15R,19R,22R,26R,30S,34S,43S,47S,51R,55R,58R,62R,66S,70S)-38-(hydroxymethyl)-7,11,15,19,22,26,30,34,43,47,51,55,58,62,66,70-hexadecamethyl-1,4,37,40-tetraoxacyclodoheptacont-2-yl]methanol

化学式: C86H172O6 (1301.3153212)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC1CCCC(C)CCCC(C)CCC(C)CCCC(C)CCCC(C)CCCC(C)CCOC(CO)COCCC(C)CCCC(C)CCCC(C)CCCC(C)CCC(C)CCCC(C)CCCC(C)CCCC(C)CCOC(CO)COCCC(C)CCC1
InChI: InChI=1S/C86H172O6/c1-69-29-17-33-73(5)41-25-49-81(13)57-61-89-67-85(65-87)91-63-59-83(15)52-28-44-76(8)36-20-32-72(4)40-24-48-80(12)56-54-78(10)46-22-38-70(2)30-18-34-74(6)42-26-50-82(14)58-62-90-68-86(66-88)92-64-60-84(16)51-27-43-75(7)35-19-31-71(3)39-23-47-79(11)55-53-77(9)45-21-37-69/h69-88H,17-68H2,1-16H3/t69-,70-,71-,72-,73+,74+,75+,76+,77-,78-,79-,80-,81+,82+,83+,84+,85+,86+/m0/s1



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Debjyoti Boral, Vamkudoth Koteswara Rao, Sureshkumar Ramasamy. Archeal Di-O-geranylgeranyl Glyceryl Phosphate Synthase of a UbiA Superfamily Member Provides Insight into the Multiple Human Diseases. Protein and peptide letters. 2020; 27(7):568-573. doi: 10.2174/0929866526666191209143948. [PMID: 31814543]
  • Günter Schwarzmann. Synthesis of Fluorescent Membrane-Spanning Lipids for Studies of Lipid Transfer and Membrane Fusion. Methods in molecular biology (Clifton, N.J.). 2019; 1949(?):307-324. doi: 10.1007/978-1-4939-9136-5_21. [PMID: 30790264]
  • Günter Schwarzmann, Bernadette Breiden, Konrad Sandhoff. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Journal of lipid research. 2015 Oct; 56(10):1861-79. doi: 10.1194/jlr.m056929. [PMID: 26269359]
  • Samta Jain, Antonella Caforio, Peter Fodran, Juke S Lolkema, Adriaan J Minnaard, Arnold J M Driessen. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. Chemistry & biology. 2014 Oct; 21(10):1392-1401. doi: 10.1016/j.chembiol.2014.07.022. [PMID: 25219966]
  • Pascale Blais Lecours, Caroline Duchaine, Michel Taillefer, Claudine Tremblay, Marc Veillette, Yvon Cormier, David Marsolais. Immunogenic properties of archaeal species found in bioaerosols. PloS one. 2011; 6(8):e23326. doi: 10.1371/journal.pone.0023326. [PMID: 21858070]
  • Eric S Boyd, Ann Pearson, Yundan Pi, Wen-Jun Li, Yi Ge Zhang, Liu He, Chuanlun L Zhang, Gill G Geesey. Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens. Extremophiles : life under extreme conditions. 2011 Jan; 15(1):59-65. doi: 10.1007/s00792-010-0339-y. [PMID: 21125411]
  • Julie Barbeau, Sandrine Cammas-Marion, Pierrick Auvray, Thierry Benvegnu. Preparation and Characterization of Stealth Archaeosomes Based on a Synthetic PEGylated Archaeal Tetraether Lipid. Journal of drug delivery. 2011; 2011(?):396068. doi: 10.1155/2011/396068. [PMID: 21603209]
  • Thierry Benvegnu, Loïc Lemiègre, Sandrine Cammas-Marion. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent patents on drug delivery & formulation. 2009 Nov; 3(3):206-20. doi: 10.2174/187221109789105630. [PMID: 19534669]
  • Denton Lai, Ben Lluncor, Imke Schröder, Robert P Gunsalus, James C Liao, Harold G Monbouquette. Reconstruction of the archaeal isoprenoid ether lipid biosynthesis pathway in Escherichia coli through digeranylgeranylglyceryl phosphate. Metabolic engineering. 2009 May; 11(3):184-91. doi: 10.1016/j.ymben.2009.01.008. [PMID: 19558961]
  • Yasuhiko Matsuno, Akihiko Sugai, Hiroki Higashibata, Wakao Fukuda, Katsuaki Ueda, Ikuko Uda, Itaru Sato, Toshihiro Itoh, Tadayuki Imanaka, Shinsuke Fujiwara. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Bioscience, biotechnology, and biochemistry. 2009 Jan; 73(1):104-8. doi: 10.1271/bbb.80520. [PMID: 19129645]
  • Haruo Shimada, Naoki Nemoto, Yasuo Shida, Tairo Oshima, Akihiko Yamagishi. Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. Journal of bacteriology. 2008 Aug; 190(15):5404-11. doi: 10.1128/jb.00415-08. [PMID: 18539746]
  • Girishchandra B Patel, Hongyan Zhou, Amalia Ponce, Wangxue Chen. Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine. 2007 Dec; 25(51):8622-36. doi: 10.1016/j.vaccine.2007.09.042. [PMID: 17959279]
  • Megumi Tarui, Nobuaki Tanaka, Kyousuke Tomura, Mami Ohga, Hiroyuki Morii, Yosuke Koga. Lipid component parts analysis of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus. Journal of UOEH. 2007 Jun; 29(2):131-9. doi: 10.7888/juoeh.29.131. [PMID: 17582985]
  • Ulrike Jahn, Roger Summons, Helen Sturt, Emmanuelle Grosjean, Harald Huber. Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I. Archives of microbiology. 2004 Nov; 182(5):404-13. doi: 10.1007/s00203-004-0725-x. [PMID: 15492905]
  • Andreas Gattinger, Michael Schloter, Jean Charles Munch. Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling. FEMS microbiology letters. 2002 Jul; 213(1):133-9. doi: 10.1111/j.1574-6968.2002.tb11297.x. [PMID: 12127500]
  • Stanislav G Batrakov, Tatiana A Pivovarova, Stanislav E Esipov, Vladimir I Sheichenko, Grigory I Karavaiko. Beta-D-glucopyranosyl caldarchaetidylglycerol is the main lipid of the acidophilic, mesophilic, ferrous iron-oxidising archaeon Ferroplasma acidiphilum. Biochimica et biophysica acta. 2002 Mar; 1581(1-2):29-35. doi: 10.1016/s1388-1981(01)00199-8. [PMID: 11960749]
  • J C Mathai, G D Sprott, M L Zeidel. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. The Journal of biological chemistry. 2001 Jul; 276(29):27266-71. doi: 10.1074/jbc.m103265200. [PMID: 11373291]
  • I Uda, A Sugai, Y H Itoh, T Itoh. Characterization of caldarchaetidylglycerol analogs, dialkyl-type and trialkyl-type, from Thermoplasma acidophilum. Lipids. 2000 Oct; 35(10):1155-7. doi: 10.1007/s11745-000-0631-x. [PMID: 11104022]
  • I Uda, A Sugai, A Shimizu, Y H Itoh, T Itoh. Glucosylcaldarchaetidylglycerol, a minor phosphoglycolipid from Thermoplasma acidophilum. Biochimica et biophysica acta. 2000 Apr; 1484(2-3):83-6. doi: 10.1016/s1388-1981(00)00007-x. [PMID: 10760458]
  • H Morii, T Eguchi, M Nishihara, K Kakinuma, H König, Y Koga. A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochimica et biophysica acta. 1998 Feb; 1390(3):339-45. doi: 10.1016/s0005-2760(97)00183-5. [PMID: 9487155]
  • S M Kaneshiro, D S Clark. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii. Journal of bacteriology. 1995 Jul; 177(13):3668-72. doi: 10.1128/jb.177.13.3668-3672.1995. [PMID: 7601829]
  • A Sugai, R Sakuma, I Fukuda, N Kurosawa, Y H Itoh, K Kon, S Ando, T Itoh. The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids. 1995 Apr; 30(4):339-44. doi: 10.1007/bf02536042. [PMID: 7609602]