Betalamic acid (BioDeep_00000006840)
Secondary id: BioDeep_00001869857
human metabolite PANOMIX_OTCML-2023 Endogenous natural product
代谢物信息卡片
化学式: C9H9NO5 (211.0481)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 25.69%
分子结构信息
SMILES: C(=C\1/C[C@H](NC(=C1)C(=O)O)C(=O)O)/C=O
InChI: InChI=1S/C9H9NO5/c11-2-1-5-3-6(8(12)13)10-7(4-5)9(14)15/h1-3,7,10H,4H2,(H,12,13)(H,14,15)/b5-1+
描述信息
Betalamic acid is found in common beet. Betalamic acid is a precursor of betalains pigments in plants of the Centrospermae. Betalamic acid is detected in Beta vulgaris (beetroot
Precursor of betalains pigments in plants of the Centrospermae. Detected in Beta vulgaris (beetroot). Betalamic acid is found in red beetroot, common beet, and root vegetables.
D004396 - Coloring Agents > D050858 - Betalains
同义名列表
9 个代谢物同义名
(4Z)-4-(2-oxoethylidene)-1,2,3,4-tetrahydropyridine-2,6-dicarboxylic acid; (4Z)-4-(2-oxoethylidene)-2,3-dihydro-1H-pyridine-2,6-dicarboxylic acid; (4Z)-4-(2-Oxoethylidene)-1,2,3,4-tetrahydropyridine-2,6-dicarboxylate; 1,2,3,4-tetrahydro-4-(Oxoethylidene)-2,6-pyridinedicarboxylic acid; Betalamic acid; Betalanic acid; Betalamate; Q6172533; Betalamic acid
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:27483
- KEGG: C08538
- PubChem: 6123097
- PubChem: 4480713
- PubChem: 5281176
- HMDB: HMDB0029842
- Metlin: METLIN64467
- ChEMBL: CHEMBL2062984
- MetaCyc: CPD-8651
- KNApSAcK: C00001582
- foodb: FDB001057
- chemspider: 35013090
- CAS: 18766-66-0
- PMhub: MS000019993
- PubChem: 10731
- 3DMET: B02208
- NIKKAJI: J373.303C
- KNApSAcK: 27483
- LOTUS: LTS0265200
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(3)
代谢反应
22 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(22)
- betacyanin biosynthesis:
H+ + betalamate + leucodopachrome ⟶ H2O + betanidin
- betacyanin biosynthesis:
H+ + betalamate + leucodopachrome ⟶ H2O + betanidin
- betacyanin biosynthesis:
UDP-α-D-glucose + leucodopachrome ⟶ H+ + UDP + cyclo-dopa 5-O-glucoside
- superpathway of betalain biosynthesis:
UDP-α-D-glucose + leucodopachrome ⟶ H+ + UDP + cyclo-dopa 5-O-glucoside
- betacyanin biosynthesis:
H+ + betalamate + leucodopachrome ⟶ H2O + betanidin
- betacyanin biosynthesis:
H+ + betalamate + leucodopachrome ⟶ H2O + betanidin
- betacyanin biosynthesis:
H+ + betalamate + leucodopachrome ⟶ H2O + betanidin
- amaranthin biosynthesis:
H+ + betalamate + cyclo-dopa glucuronosyl glucoside ⟶ H2O + amaranthin
- betaxanthin biosynthesis (via dopaxanthin):
L-dopa + betalamate ⟶ H+ + H2O + dopaxanthin
- betalamic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- betaxanthin biosynthesis (via dopamine):
H+ + L-dopa ⟶ CO2 + dopamine
- betaxanthin biosynthesis (via dopamine):
H+ + L-dopa ⟶ CO2 + dopamine
- betalamic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- betacyanin biosynthesis (via dopamine):
2-descarboxy-cyclo-dopa + A + H+ + betalamate ⟶ 2-descarboxy-betanidin + A(H2) + H2O
- betaxanthin biosynthesis (via dopamine):
betalamate + dopamine ⟶ H+ + H2O + miraxanthin V
- betaxanthin biosynthesis:
3-methoxytyramine + betalamate ⟶ H+ + H2O + betaxanthin
- betalamic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- betaxanthin biosynthesis (via dopamine):
H+ + L-dopa ⟶ CO2 + dopamine
- betalamic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- betalamic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
- betaxanthin biosynthesis (via dopamine):
H+ + L-dopa ⟶ CO2 + dopamine
- betalamic acid biosynthesis:
(6R)-L-erythro-5,6,7,8-tetrahydrobiopterin + O2 + tyr ⟶ (6R)-4a-hydroxy-tetrahydrobiopterin + L-dopa
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
95 个相关的物种来源信息
- 155619 - Agaricomycetes: LTS0265200
- 3542 - Aizoaceae: LTS0265200
- 41955 - Amanita: LTS0265200
- 41956 - Amanita muscaria: 10.1002/HLCA.19910740115
- 41956 - Amanita muscaria: LTS0265200
- 41954 - Amanitaceae: LTS0265200
- 3563 - Amaranthaceae: LTS0265200
- 3550 - Atriplex: LTS0265200
- 34272 - Atriplex hortensis: 10.1016/S0031-9422(00)95182-3
- 34272 - Atriplex hortensis: LTS0265200
- 5204 - Basidiomycota: LTS0265200
- 83153 - Bassia: LTS0265200
- 83154 - Bassia scoparia: LTS0265200
- 3554 - Beta: 10.1021/NP010524S
- 3554 - Beta: LTS0265200
- 161934 - Beta vulgaris:
- 161934 - Beta vulgaris: 10.1016/S0031-9422(01)00141-8
- 161934 - Beta vulgaris: 10.1021/NP010524S
- 161934 - Beta vulgaris: LTS0265200
- 3555 - Beta vulgaris subsp. vulgaris: 10.1515/ZNC-2001-5-604
- 3555 - Beta vulgaris subsp. vulgaris: LTS0265200
- 3593 - Cactaceae: LTS0265200
- 46143 - Calandrinia: LTS0265200
- 46111 - Celosia: 10.1016/S0031-9422(01)00141-8
- 46111 - Celosia: LTS0265200
- 46112 - Celosia argentea:
- 46112 - Celosia argentea: 10.1016/S0031-9422(00)95182-3
- 46112 - Celosia argentea: LTS0265200
- 752825 - Celosia argentea var. plumosa: 10.1016/S0031-9422(01)00141-8
- 752825 - Celosia argentea var. plumosa: LTS0265200
- 124768 - Celosia cristata: 10.1016/S0031-9422(01)00141-8
- 124768 - Celosia cristata: LTS0265200
- 1804623 - Chenopodiaceae: LTS0265200
- 3558 - Chenopodium: LTS0265200
- 66262 - Chenopodium amaranticolor: 10.1016/S0031-9422(00)95182-3
- 66262 - Chenopodium amaranticolor: LTS0265200
- 434242 - Chenopodium giganteum: 10.1016/S0031-9422(00)95182-3
- 434242 - Chenopodium giganteum: LTS0265200
- 89073 - Cistanthe: LTS0265200
- 107587 - Cistanthe grandiflora: 10.1016/S0031-9422(00)95182-3
- 107587 - Cistanthe grandiflora: LTS0265200
- 215948 - Cleretum: LTS0265200
- 1229206 - Cleretum apetalum: 10.1016/S0031-9422(00)95182-3
- 1229206 - Cleretum apetalum: LTS0265200
- 85189 - Delosperma: LTS0265200
- 278074 - Delosperma cooperi: 10.1016/S0031-9422(00)95182-3
- 278074 - Delosperma cooperi: LTS0265200
- 2759 - Eukaryota: LTS0265200
- 4751 - Fungi: LTS0265200
- 169521 - Gomphrena: LTS0265200
- 221775 - Gomphrena globosa: 10.1016/S0031-9422(00)95182-3
- 221775 - Gomphrena globosa: LTS0265200
- 221778 - Gomphrena serrata: 10.1016/S0031-9422(00)95182-3
- 221778 - Gomphrena serrata: LTS0265200
- 9606 - Homo sapiens: -
- 169209 - Iresine: LTS0265200
- 217685 - Iresine diffusa: LTS0265200
- 169210 - Iresine herbstii: 10.1016/S0031-9422(00)95182-3
- 169210 - Iresine herbstii: LTS0265200
- 267503 - Kochia: LTS0265200
- 188832 - Lampranthus: LTS0265200
- 246748 - Lampranthus roseus: 10.1016/S0031-9422(00)95182-3
- 246748 - Lampranthus roseus: LTS0265200
- 3398 - Magnoliopsida: LTS0265200
- 3537 - Mirabilis: LTS0265200
- 3538 - Mirabilis jalapa: 10.1016/S0031-9422(00)95182-3
- 3538 - Mirabilis jalapa: LTS0265200
- 703407 - Montiaceae: LTS0265200
- 3536 - Nyctaginaceae: LTS0265200
- 441552 - Petiveriaceae: LTS0265200
- 3525 - Phytolaccaceae: LTS0265200
- 3582 - Portulaca: 10.1016/S0044-328X(83)80204-9
- 3582 - Portulaca: LTS0265200
- 996332 - Portulaca cryptopetala: 10.1016/S0044-328X(83)80204-9
- 3583 - Portulaca grandiflora:
- 3583 - Portulaca grandiflora: 10.1016/S0031-9422(00)95182-3
- 3583 - Portulaca grandiflora: 10.1016/S0044-328X(83)80204-9
- 3583 - Portulaca grandiflora: LTS0265200
- 146113 - Portulaca jacobseniana: 10.1016/S0044-328X(83)80204-9
- 146113 - Portulaca jacobseniana: LTS0265200
- 46147 - Portulaca oleracea: 10.1016/S0044-328X(83)80204-9
- 46147 - Portulaca oleracea: LTS0265200
- 766930 - Portulaca pilosa: 10.1016/S0044-328X(83)80204-9
- 766930 - Portulaca pilosa: LTS0265200
- 1150923 - Portulaca smallii: 10.1016/S0044-328X(83)80204-9
- 1150923 - Portulaca smallii: LTS0265200
- 3581 - Portulacaceae: LTS0265200
- 3532 - Rivina: LTS0265200
- 3533 - Rivina humilis: 10.1016/S0031-9422(00)95182-3
- 3533 - Rivina humilis: LTS0265200
- 3594 - Schlumbergera: LTS0265200
- 3562 - Spinacia oleracea: 10.1371/JOURNAL.PONE.0203656
- 35493 - Streptophyta: LTS0265200
- 58023 - Tracheophyta: LTS0265200
- 33090 - Viridiplantae: LTS0265200
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Paula Henarejos-Escudero, Samanta Hernández-García, Pedro Martínez-Rodríguez, Francisco García-Carmona, Fernando Gandía-Herrero. Bioactive potential and spectroscopical characterization of a novel family of plant pigments betalains derived from dopamine.
Food research international (Ottawa, Ont.).
2022 12; 162(Pt A):111956. doi:
10.1016/j.foodres.2022.111956
. [PMID: 36461207] - Qingzhu Hua, Canbin Chen, Fangfang Xie, Zhike Zhang, Rong Zhang, Jietang Zhao, Guibing Hu, Yonghua Qin. A Genome-Wide Identification Study Reveals That HmoCYP76AD1, HmoDODAα1 and HmocDOPA5GT Involved in Betalain Biosynthesis in Hylocereus.
Genes.
2021 11; 12(12):. doi:
10.3390/genes12121858
. [PMID: 34946807] - Akane Kasei, Hanako Watanabe, Natsumi Ishiduka, Kyoko Noda, Masatsune Murata, Masaaki Sakuta. Comparative Analysis of the Extradiol Ring-Cleavage Dioxygenase LigB from Arabidopsis and 3,4-Dihydroxyphenylalanine Dioxygenase from Betalain-Producing Plants.
Plant & cell physiology.
2021 Sep; 62(4):732-740. doi:
10.1093/pcp/pcab031
. [PMID: 33638982] - Paz Robert, Cristina Vergara, Andrea Silva-Weiss, Fernando A Osorio, Rocío Santander, Carmen Sáenz, Begoña Giménez. Influence of gelation on the retention of purple cactus pear extract in microencapsulated double emulsions.
PloS one.
2020; 15(1):e0227866. doi:
10.1371/journal.pone.0227866
. [PMID: 31945132] - Syed Farhad Hussain Naqvi, Muhammad Husnain. Betalains: Potential Drugs with Versatile Phytochemistry.
Critical reviews in eukaryotic gene expression.
2020; 30(2):169-189. doi:
10.1615/critreveukaryotgeneexpr.2020030231
. [PMID: 32558495] - María Alejandra Guerrero-Rubio, Rosalía López-Llorca, Paula Henarejos-Escudero, Francisco García-Carmona, Fernando Gandía-Herrero. Scaled-up biotechnological production of individual betalains in a microbial system.
Microbial biotechnology.
2019 09; 12(5):993-1002. doi:
10.1111/1751-7915.13452
. [PMID: 31270958] - Luis Eduardo Contreras-Llano, M Alejandra Guerrero-Rubio, José Daniel Lozada-Ramírez, Francisco García-Carmona, Fernando Gandía-Herrero. First Betalain-Producing Bacteria Break the Exclusive Presence of the Pigments in the Plant Kingdom.
mBio.
2019 03; 10(2):. doi:
10.1128/mbio.00345-19
. [PMID: 30890610] - Alexander Bean, Rasika Sunnadeniya, Neda Akhavan, Annabelle Campbell, Matthew Brown, Alan Lloyd. Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution.
The New phytologist.
2018 07; 219(1):287-296. doi:
10.1111/nph.15159
. [PMID: 29754447] - Kana Takahashi, Kazuko Yoshida, Masaaki Sakuta. Comparative analysis of two DOPA dioxygenases from Phytolacca Americana.
Natural product communications.
2015 May; 10(5):713-6. doi:
. [PMID: 26058141]
- Kana Takahashi, Kazuko Yoshida, Kei Yura, Hiroshi Ashihara, Masaaki Sakuta. Biochemical analysis of Phytolacca DOPA dioxygenase.
Natural product communications.
2015 May; 10(5):717-9. doi:
. [PMID: 26058142]
- Juana Cabanes, Fernando Gandía-Herrero, Josefa Escribano, Francisco García-Carmona, Mercedes Jiménez-Atiénzar. One-step synthesis of betalains using a novel betalamic acid derivatized support.
Journal of agricultural and food chemistry.
2014 Apr; 62(17):3776-82. doi:
10.1021/jf500506y
. [PMID: 24689508] - Nobuhiro Sasaki, Yutaka Abe, Yukihiro Goda, Taiji Adachi, Kichiji Kasahara, Yoshihiro Ozeki. Detection of DOPA 4,5-dioxygenase (DOD) activity using recombinant protein prepared from Escherichia coli cells harboring cDNA encoding DOD from Mirabilis jalapa.
Plant & cell physiology.
2009 May; 50(5):1012-6. doi:
10.1093/pcp/pcp053
. [PMID: 19366710] - Florian C Stintzing, Andreas Schieber, Reinhold Carle. Identification of betalains from yellow beet (Beta vulgaris L.) and cactus pear [Opuntia ficus-indica (L.) Mill.] by high-performance liquid chromatography-electrospray ionization mass spectrometry.
Journal of agricultural and food chemistry.
2002 Apr; 50(8):2302-7. doi:
10.1021/jf011305f
. [PMID: 11929288] - N M Merkle, H Wiedeck, C Herfarth, A Grünert. [Immediate postoperative enteral tube feeding following resection of the large intestine. Experiences with a controlled clinical study].
Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen.
1984 Apr; 55(4):267-74. doi:
NULL
. [PMID: 6426893]