Cyclic GMP (BioDeep_00000003129)
Secondary id: BioDeep_00000400238, BioDeep_00000415793
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C10H12N5O7P (345.0474)
中文名称: 鸟苷3,5-环一磷酸, 鸟苷-3',5'-环一磷酸, 鸟苷-3ˊ,5ˊ-环一磷酸
谱图信息:
最多检出来源 Homo sapiens(blood) 21.53%
Last reviewed on 2024-12-10.
Cite this Page
Cyclic GMP. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/cyclic_gmp (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000003129). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1C2C(C(C(O2)N3C=NC4=C3N=C(NC4=O)N)O)OP(=O)(O1)O
InChI: InChI=1S/C10H12N5O7P/c11-10-13-7-4(8(17)14-10)12-2-15(7)9-5(16)6-3(21-9)1-20-23(18,19)22-6/h2-3,5-6,9,16H,1H2,(H,18,19)(H3,11,13,14,17)/t3-,5-,6-,9-/m1/s1
描述信息
Cyclic-gmp, also known as cgmp or guanosine 3,5-cyclic monophosphate, is a member of the class of compounds known as 3,5-cyclic purine nucleotides. 3,5-cyclic purine nucleotides are purine nucleotides in which the oxygen atoms linked to the C3 and C5 carbon atoms of the ribose moiety are both bonded the same phosphorus atom of the phosphate group. Cyclic-gmp is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Cyclic-gmp can be found in a number of food items such as common sage, jews ear, java plum, and pepper (c. chinense), which makes cyclic-gmp a potential biomarker for the consumption of these food products. Cyclic-gmp can be found primarily in blood and cerebrospinal fluid (CSF), as well as throughout most human tissues. Cyclic-gmp exists in all living species, ranging from bacteria to humans. Moreover, cyclic-gmp is found to be associated with headache.
Guanosine cyclic 3,5-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3- and 5-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed).
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
32 个代谢物同义名
9-[(4aR,6R,7R,7aS)-2,7-dihydroxy-2-oxo-hexahydro-2λ⁵-furo[3,2-d][1,3,2]dioxaphosphinin-6-yl]-2-amino-6,9-dihydro-1H-purin-6-one; Guanosine 3,5-cyclic monophosphoric acid; Guanosine cyclic monophosphoric acid; Guanosine 3,5-cyclic phosphoric acid; 3,5-monoPhosphate, guanosine cyclic; Cyclic-3,5-monophosphate, guanosine; Cyclic 3,5-monophosphate, guanosine; Cyclic 3,5-guanosine monophosphate; Guanosine-3,5-cyclic monophosphate; Guanosine cyclic 3,5 monophosphate; Cyclic guanosine 3,5-monophosphate; Guanosine cyclic-3,5-monophosphate; Guanosine 3,5-cyclic monophosphate; Guanosine cyclic 3,5-monophosphate; Guanosine 3,5-cyclic-monophosphate; Guanosine-cyclic-phosphoric-acid; monoPhosphate, guanosine cyclic; Cyclic monophosphate, guanosine; Guanosine 3,5-cyclic phosphate; Guanosine cyclic-monophosphate; Guanosine cyclic monophosphate; Guanosine 3,5-monophosphate; 3,5-Guanosine monophosphate; 3,5-cyclic GMP; 3,5-Guanosine; GMP, Cyclic; Cyclic GMP; Cyclic-GMP; Q50318259; CGMP; Guanosine 3',5'-cyclic monophosphate(Cyclic GMP); 3',5'-Cyclic GMP
数据库引用编号
35 个数据库交叉引用编号
- ChEBI: CHEBI:16356
- KEGG: C00942
- PubChem: 135398570
- HMDB: HMDB0001314
- Metlin: METLIN3485
- DrugBank: DB02315
- ChEMBL: CHEMBL395336
- Wikipedia: Cyclic guanosine monophosphate
- MeSH: Cyclic GMP
- KNApSAcK: C00019673
- foodb: FDB030764
- chemspider: 22734
- CAS: 7665-99-8
- MoNA: PS024208
- MoNA: PS024206
- MoNA: PS024201
- MoNA: PR100563
- MoNA: PS024205
- MoNA: PS024207
- MoNA: PS024210
- MoNA: PR100141
- MoNA: PS024202
- MoNA: PS024204
- MoNA: PS024209
- MoNA: PS024203
- MoNA: PS024211
- MoNA: PS024212
- PMhub: MS000008184
- PDB-CCD: 35G
- PDB-CCD: PCG
- 3DMET: B01354
- NIKKAJI: J8.958C
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-248
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-906
- KNApSAcK: 16356
分类词条
相关代谢途径
Reactome(8)
BioCyc(0)
PlantCyc(6)
代谢反应
174 个相关的代谢反应过程信息。
Reactome(161)
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Muscle contraction:
Guanylate cyclase, soluble + NO ⟶ Guanylate cyclase:NO
- Smooth Muscle Contraction:
Guanylate cyclase, soluble + NO ⟶ Guanylate cyclase:NO
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by WNT:
ATP + AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex ⟶ ADP + p-AXIN:GSK3:CK1alpha:ub-APC:PP2A:AMER1 complex
- Beta-catenin independent WNT signaling:
ATP + CAMK2:CaM ⟶ ADP + p-T286 CAMK2:CaM
- Ca2+ pathway:
ATP + CAMK2:CaM ⟶ ADP + p-T286 CAMK2:CaM
- Hemostasis:
AMP + GTP ⟶ ADP + GDP
- Platelet homeostasis:
H0ZG60 + LDL ⟶ LDL:LRP8
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- The phototransduction cascade:
GTP ⟶ PPi + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
GTP ⟶ PPi + cGMP
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The phototransduction cascade:
GTP ⟶ PPi + cGMP
- Activation of the phototransduction cascade:
Gt-GTP ⟶ GNAT1-GTP + GNB1:GNGT1
- Inactivation, recovery and regulation of the phototransduction cascade:
GTP ⟶ PPi + cGMP
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
GNAT1 ⟶ GNAT1 (Met removed) + L-Met
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
GNAT1 ⟶ GNAT1 (Met removed) + L-Met
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The phototransduction cascade:
Galphai ⟶ Galphai + L-Met
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
Galphai ⟶ Galphai + L-Met
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
CNG channel + cGMP ⟶ cGMP:CNG channel
- cGMP effects:
cGKs + cGMP ⟶ Activated cGMP-dependent protein kinase (PKGs)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
Transducin alpha-1 chain ⟶ GNAT1 (Met removed) + L-Met
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
Transducin alpha-1 chain ⟶ GNAT1 (Met removed) + L-Met
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
PRKG dimer + cGMP ⟶ PRKG homodimer:cGMP
- Ca2+ pathway:
PRKG dimer + cGMP ⟶ PRKG homodimer:cGMP
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
Gnat1 ⟶ GNAT1 (Met removed) + L-Met
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
Gnat1 ⟶ GNAT1 (Met removed) + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
D3ZSS5 ⟶ D3ZSS5 + L-Met
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
D3ZSS5 ⟶ D3ZSS5 + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
A0A287BRP2 ⟶ A0A287BRP2 + L-Met
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
A0A287BRP2 ⟶ A0A287BRP2 + L-Met
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The phototransduction cascade:
ATP + Q9IA36 ⟶ ADP + phospho-p-S334,338,343-at-retinyl-RHO
- Activation of the phototransduction cascade:
cGMP:CNG channel ⟶ CNG channel + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
ATP + Q9IA36 ⟶ ADP + phospho-p-S334,338,343-at-retinyl-RHO
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
RHOA:GTP:Mg2+ + ppDVL:DAAM1 ⟶ ppDVL:DAAM1:RHOA:GTP
- Ca2+ pathway:
CALM1:4xCa2+ + CAMK2A ⟶ CAMK2:CaM
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
cGMP ⟶ GMP
- cGMP effects:
cGMP ⟶ GMP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
H2O + cGMP ⟶ GMP
- Ca2+ pathway:
H2O + cGMP ⟶ GMP
- Ca2+ pathway:
H2O + cGMP ⟶ GMP
- cGMP effects:
cGMP ⟶ GMP
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Hemostasis:
3AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
H2O + cGMP ⟶ GMP
- Ca2+ pathway:
H2O + cGMP ⟶ GMP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
H2O + cGMP ⟶ GMP
- Ca2+ pathway:
H2O + cGMP ⟶ GMP
- Hemostasis:
3AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
H2O + cGMP ⟶ GMP
- Ca2+ pathway:
H2O + cGMP ⟶ GMP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Hemostasis:
2AG + H2O ⟶ AA + Glycerol + H+
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
H2O + cGMP ⟶ GMP
- Ca2+ pathway:
H2O + cGMP ⟶ GMP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- cGMP effects:
cGMP ⟶ GMP
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
A4IHG6 ⟶ A4IHG6 + L-Met
- Activation of the phototransduction cascade:
H2O + cGMP ⟶ GMP
- Inactivation, recovery and regulation of the phototransduction cascade:
A4IHG6 ⟶ A4IHG6 + L-Met
- Signaling by WNT:
AXIN:TNKS + NAD ⟶ NAM + RibC-AXIN:TNKS
- Beta-catenin independent WNT signaling:
H2O + cGMP ⟶ GMP
- Ca2+ pathway:
H2O + cGMP ⟶ GMP
- Activation of the phototransduction cascade:
H2O + cGMP ⟶ GMP
- cGMP effects:
cGMP ⟶ GMP
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
Q54YX3 + atROL ⟶ RLBP1:atROL
- Activation of the phototransduction cascade:
H2O + cGMP ⟶ GMP
BioCyc(0)
WikiPathways(7)
- Phosphodiesterases in neuronal function:
AMP ⟶ Cyclic AMP
- RAS and bradykinin pathways in COVID-19:
L-arginine ⟶ nitric oxide
- Endothelin pathways:
ATP ⟶ cAMP
- Endothelin pathways:
ATP ⟶ cAMP
- Joubert syndrome:
cGMP ⟶ GMP
- NO/cGMP/PKG mediated neuroprotection:
cAMP ⟶ AMP
- Cardiomyocyte signaling pathways converging on Titin:
ATP ⟶ 3',5'-cyclic AMP
Plant Reactome(0)
INOH(1)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(4)
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
- Ion Channels and Their Functional Role in Vascular Endothelium:
Adenosine triphosphate ⟶ Pyrophosphate + cAMP
PharmGKB(0)
8 个相关的物种来源信息
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 587669 - Isodon rubescens: 10.1016/J.JCHROMB.2011.07.046
- 1417791 - Pelargonium sidoides: 10.1055/S-0029-1186167
- 3885 - Phaseolus vulgaris: 10.1016/S0031-9422(00)80467-7
- 3888 - Pisum sativum: 10.1016/S0031-9422(00)97962-7
- 326968 - Ziziphus jujuba: 10.1016/J.FOODCHEM.2014.07.013
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Haofei Liu, Gaoge Xu, Baodian Guo, Fengquan Liu. Old role with new feature: T2SS ATPase as a cyclic-di-GMP receptor to regulate antibiotic production.
Applied and environmental microbiology.
2024 May; 90(5):e0041824. doi:
10.1128/aem.00418-24
. [PMID: 38624198] - Chunhua Gao, Zhe Wang, Xiaojing Liu, Rongzhen Sun, Shengyao Ma, Zongchen Ma, Qi Wang, Guoqiang Li, Han-Ting Zhang. The Construction and Application of a New Screening Method for Phosphodiesterase Inhibitors.
Biosensors.
2024 May; 14(5):. doi:
10.3390/bios14050252
. [PMID: 38785726] - Laura Yunuen Hernández-Sánchez, María Eva González-Trujano, Diego A Moreno, David Martínez-Vargas, Heike Vibrans, Alberto Hernandez-Leon, Alejandro Dorazco-González, Francisco Pellicer, Marcos Soto-Hernández. Antinociceptive effects of Raphanus sativus sprouts involve the opioid and 5-HT1A serotonin receptors, cAMP/cGMP pathways, and the central activity of sulforaphane.
Food & function.
2024 May; 15(9):4773-4784. doi:
10.1039/d3fo05229j
. [PMID: 38469873] - Alexander J Dear, Gonzalo A Garcia, Georg Meisl, Galen A Collins, Tuomas P J Knowles, Alfred L Goldberg. Maximum entropy determination of mammalian proteome dynamics.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Apr; 121(18):e2313107121. doi:
10.1073/pnas.2313107121
. [PMID: 38652742] - Yi Shi, Yanbin Wu, Liangzhe Wang, Bingke Bai, Xuhui He, Hongrui Wang, Chengzhong Zhang, Jinzhong Wu, Dan Jia, Yuanjie Zhu, Chengjian Zheng. Gooderoside A from Anoectochilus elatus attenuates acute and chronic pains by inhibiting NO/cGMP and IRAK4/IRAK1/TAK1 signaling pathways.
Journal of ethnopharmacology.
2024 Apr; 324(?):117767. doi:
10.1016/j.jep.2024.117767
. [PMID: 38224795] - Gangqin Li, Lin Jiang, Kuan Bai, Guangxing Tan. MicroRNA-503-5p protects streptozotocin-induced erectile dysfunction in diabetic rats by downregulating SYDE2.
Cellular and molecular biology (Noisy-le-Grand, France).
2024 Mar; 70(3):48-53. doi:
10.14715/cmb/2024.70.3.7
. [PMID: 38650154] - Ji Sun Nam, Su-Jeong Park, Chul Woo Ahn, Eun-Suk Cho, Hee-Joo Kim, YuSik Kim. Follistatin-like 1 is a myokine regulating lipid mobilization during endurance exercise and recovery.
Obesity (Silver Spring, Md.).
2024 Feb; 32(2):352-362. doi:
10.1002/oby.23949
. [PMID: 38018497] - Xiaocui Ling, Xiao Liu, Kun Wang, Minhao Guo, Yanzhe Ou, Danting Li, Yulin Xiang, Jiachen Zheng, Lihua Hu, Hongyun Zhang, Weihui Li. Lsr2 acts as a cyclic di-GMP receptor that promotes keto-mycolic acid synthesis and biofilm formation in mycobacteria.
Nature communications.
2024 Jan; 15(1):695. doi:
10.1038/s41467-024-44774-6
. [PMID: 38267428] - Min Wu, Chunyan Mu, Huiwen Yang, Yue Wang, Ping Ma, Shibao Li, Zhongcheng Wang, Ting Lan. 8-Br-cGMP suppresses tumor progression through EGFR/PLC γ1 pathway in epithelial ovarian cancer.
Molecular biology reports.
2024 Jan; 51(1):140. doi:
10.1007/s11033-023-09037-5
. [PMID: 38236447] - Ilona Turek, Chris Gehring. Peptide-Mediated Cyclic Nucleotide Signaling in Plants: Identification and Characterization of Interactor Proteins with Nucleotide Cyclase Activity.
Methods in molecular biology (Clifton, N.J.).
2024; 2731(?):179-204. doi:
10.1007/978-1-0716-3511-7_14
. [PMID: 38019435] - Raj Kumar Verma, Parimala Gondu, Tirthankar Saha, Subhadeep Chatterjee. The global transcription regulator XooClp governs Type IV pili system mediated bacterial virulence by directly binding to their promoters to coordinate virulence associated functions.
Molecular plant-microbe interactions : MPMI.
2023 Dec; ?(?):. doi:
10.1094/mpmi-07-23-0100-r
. [PMID: 38105438] - Xia Li, Wenfang Yin, Junjie Desmond Lin, Yong Zhang, Quan Guo, Gerun Wang, Xiayu Chen, Binbin Cui, Mingfang Wang, Min Chen, Peng Li, Ya-Wen He, Wei Qian, Haibin Luo, Lian-Hui Zhang, Xue-Wei Liu, Shihao Song, Yinyue Deng. Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2',3'-cyclic guanosine monophosphate.
Nature communications.
2023 Nov; 14(1):7654. doi:
10.1038/s41467-023-43461-2
. [PMID: 37996405] - Kaihuai Li, Chaoyun Ma, Xue Zhou, Chunlan Xiong, Bo Wang, Yong Wang, Fengquan Liu. Regulatory effects of diverse DSF family quorum sensing signals in plant-associated bacteria.
Molecular plant-microbe interactions : MPMI.
2023 Oct; ?(?):. doi:
10.1094/mpmi-05-23-0074-cr
. [PMID: 37880815] - Biswarup Banerjee, Xiaochen Yuan, Ching-Hong Yang. Dissecting the molecular dance: c-di-GMP, cAMP-CRP, and VfmH collaboration in pectate lyase regulation for Dickeya dadantii-unveiling the soft rot pathogen's strategy.
Microbiology spectrum.
2023 Oct; ?(?):e0153723. doi:
10.1128/spectrum.01537-23
. [PMID: 37811940] - Tingting Wang, Canfeng Hua, Xin Deng. c-di-GMP signaling in Pseudomonas syringae complex.
Microbiological research.
2023 Oct; 275(?):127445. doi:
10.1016/j.micres.2023.127445
. [PMID: 37450986] - Citlaly Gutiérrez-Rodelo, Shirlley Elizabeth Martínez-Tolibia, Guadalupe Elide Morales-Figueroa, Josué Arturo Velázquez-Moyado, J Alberto Olivares-Reyes, Andrés Navarrete-Castro. Modulating cyclic nucleotides pathways by bioactive compounds in combatting anxiety and depression disorders.
Molecular biology reports.
2023 Jul; ?(?):. doi:
10.1007/s11033-023-08650-8
. [PMID: 37486442] - Zhengshan Hu, Xiangdong Zheng, Jian Yang. Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel.
Nature communications.
2023 07; 14(1):4284. doi:
10.1038/s41467-023-39971-8
. [PMID: 37463923] - Brygida Świeżawska-Boniecka, Adriana Szmidt-Jaworska. Phytohormones and cyclic nucleotides - Long-awaited couples?.
Journal of plant physiology.
2023 07; 286(?):154005. doi:
10.1016/j.jplph.2023.154005
. [PMID: 37186984] - Asser F Bedair, Ahmed Wahid, Nesrine S El-Mezayen, Amira F El-Yazbi, Hadeel A Khalil, Nayera W Hassan, Elham A Afify. Nicorandil/ morphine crosstalk accounts for antinociception and hepatoprotection in hepatic fibrosis in rats: Distinct roles of opioid/cGMP and NO/KATP pathways.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jun; 165(?):115068. doi:
10.1016/j.biopha.2023.115068
. [PMID: 37392650] - Mohammad Amin Behmanesh, Amin Rasekhian, Forutan Kiani, Mostafa Dehghandoost, Davood Alinezhad Dezfuli, Behnam Ghorbanzadeh. The nitric oxide-cyclic GMP-KATP channels pathway contributes to the effects of montelukast against gastric damage induced by ethanol.
Alcohol (Fayetteville, N.Y.).
2023 Jun; ?(?):. doi:
10.1016/j.alcohol.2023.05.008
. [PMID: 37295565] - Denise Rubinho Dos Santos Martins, Caroline Honaiser Lescano, Alberto Fernando Oliveira Justo, Julia Modesto Vicente, Sérgio Henrique Sousa Santos, Charles Martins Aguilar, Alexandre Borges, Ivan Pires de Oliveira, Eliana Janet Sanjinez-Argandoña. Effect of Different Extraction Methods on Anthocyanin Content in Hibiscus sabdariffa L. and their Antiplatelet and Vasorelaxant Properties.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Apr; ?(?):. doi:
10.1007/s11130-023-01067-5
. [PMID: 37120677] - Ya-Fang Liao, Hui-Jun Pan, Nuerziba Abudurezeke, Chun-Lu Yuan, Yan-Li Yuan, Shu-Da Zhao, Dan-Dan Zhang, Shuang Huang. Functional Axis of PDE5/cGMP Mediates Timosaponin-AIII-Elicited Growth Suppression of Glioblastoma U87MG Cells.
Molecules (Basel, Switzerland).
2023 Apr; 28(9):. doi:
10.3390/molecules28093795
. [PMID: 37175205] - Milad Rahemi, Shokooh Mohtadi, Hossein Rajabi Vardanjani, Mohammad Javad Khodayar. The role of L-arginine/NO/cGMP/KATP channel pathway in the local antinociceptive effect of berberine in the rat formalin test.
Behavioural pharmacology.
2023 Mar; ?(?):. doi:
10.1097/fbp.0000000000000721
. [PMID: 36939560] - Zheng-Wen Wang, Bi-Wei Chen, Shao-Zong Chen, Li-Li Zhang, Hong-Wei Sun, Xiao-Li Chang. [Effect of electroacupuncture at "Zusanli" (ST36) and "Tianshu" (ST25) on intestinal function and autonomic nerve balance in rats with irritable bowel syndrome].
Zhen ci yan jiu = Acupuncture research.
2023 Feb; 48(2):165-71. doi:
10.13702/j.1000-0607.20211324
. [PMID: 36858413] - Yi-Wei Shen, Yang-Ang Cheng, Yi Li, Zuo Li, Bing-You Yang, Xue Li. Sambucus williamsii Hance maintains bone homeostasis in hyperglycemia-induced osteopenia by reversing oxidative stress via cGMP/PKG signal transduction.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Feb; 110(?):154607. doi:
10.1016/j.phymed.2022.154607
. [PMID: 36610352] - Liqian Chen, Xinghong Zhou, Yijian Deng, Ying Yang, Xiaohu Chen, Qinghong Chen, Yanyan Liu, Xiuqiong Fu, Hiu Yee Kwan, Yanting You, Wen Jin, Xiaoshan Zhao. Zhenwu decoction ameliorates cardiac hypertrophy through activating sGC (soluble guanylate cyclase) - cGMP (cyclic guanosine monophosphate) - PKG (protein kinase G) pathway.
Journal of ethnopharmacology.
2023 Jan; 300(?):115705. doi:
10.1016/j.jep.2022.115705
. [PMID: 36099983] - Ming Lu, Yanpeng Wang, Yuanye Jiang, Cuiping Zhang, Hongping Wang, Wenjun Sha, Lin Chen, Tao Lei, Limei Liu. Berberine inhibits gluconeogenesis in spontaneous diabetic rats by regulating the AKT/MAPK/NO/cGMP/PKG signaling pathway.
Molecular and cellular biochemistry.
2023 Jan; ?(?):. doi:
10.1007/s11010-022-04604-z
. [PMID: 36598615] - Wan Yin Tew, Chu Shan Tan, Chong Seng Yan, Hui Wei Loh, Xu Wen, Xu Wei, Mun Fei Yam. Evaluation of vasodilatory effect and antihypertensive effect of chrysin through in vitro and sub-chronic in vivo study.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jan; 157(?):114020. doi:
10.1016/j.biopha.2022.114020
. [PMID: 36469968] - Xin Zhang, Yan Wang, Yao Wu, Zhi-Hui Yuan, Zhen Cai, Wei Qian, Xin Ge, Fang-Fang Wang. Dual Regulatory Role Exerted by Cyclic Dimeric GMP To Control FsnR-Mediated Bacterial Swimming.
mBio.
2022 10; 13(5):e0141422. doi:
10.1128/mbio.01414-22
. [PMID: 36069448] - Shu Ye, Matteo Lunghi, Dominique Soldati-Favre. A Signaling Factor Linked to Toxoplasma gondii Guanylate Cyclase Complex Controls Invasion and Egress during Acute and Chronic Infection.
mBio.
2022 10; 13(5):e0196522. doi:
10.1128/mbio.01965-22
. [PMID: 36200777] - Quan Guo, Binbin Cui, Mingfang Wang, Xia Li, Huihui Tan, Shihao Song, Jianuan Zhou, Lian-Hui Zhang, Yinyue Deng. Elongation factor P modulates Acinetobacter baumannii physiology and virulence as a cyclic dimeric guanosine monophosphate effector.
Proceedings of the National Academy of Sciences of the United States of America.
2022 10; 119(41):e2209838119. doi:
10.1073/pnas.2209838119
. [PMID: 36191190] - Patrícia Regina Terço Leite, Bethânia Rosa Lorençone, Karyne Garcia Tafarelo Moreno, Katiana Simões Lopes, Aline Aparecida Macedo Marques, Clara Soligo Fortini, Rhanany Alan Calloi Palozi, Mariana Dalmagro, Cândida Aparecida Leite Kassuya, Ariany Carvalho Dos Santos, Marcos José Salvador, Arquimedes Gasparotto Junior. The NO-cGMP-K+ Channel Pathway Participates in Diuretic and Cardioprotective Effects of Blutaparon portulacoides in Spontaneously Hypertensive Rats.
Planta medica.
2022 Oct; 88(13):1152-1162. doi:
10.1055/a-1690-3566
. [PMID: 35299274] - Sadettin Demirel. Rosa damascena Miller essential oil relaxes rat thoracic aorta through the NO-cGMP-dependent pathway.
Prostaglandins & other lipid mediators.
2022 10; 162(?):106661. doi:
10.1016/j.prostaglandins.2022.106661
. [PMID: 35750298] - Zhang Jiaying, Wei Xiangxiang, L I Xuefeng, Yuan Yang, Dou Yinghuan, Shi Yanbin, Xie Ping, Zhou Mengru, Zhao Junnan, L I Miao, Zhang Shuwen, Zhu Rui, Tian Ying, Tan Hao, Tian Feifei. Shunxin decoction improves diastolic function in rats with heart failure with preserved ejection fraction induced by abdominal aorta constriction through cyclic guanosine monophosphate-dependent protein kinase Signaling Pathway.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2022 10; 42(5):764-772. doi:
10.19852/j.cnki.jtcm.20220519.003
. [PMID: 36083484] - Alamgeer, Hira Asif, Tahir Ali Chohan, Hafiz Muhammad Irfan, Mulazim Hussain Asim, Syed Nasir Abbas Bukhari, Waqas Younis, Yusuf S Althobaiti, Aman Ullah, Abdul Qayyum Khan, Alqassem Y Hakami. Ex vivo, in vitro, and in silico approaches to unveil the mechanisms underlying vasorelaxation effect of Mentha Longifolia (L.) in porcine coronary artery.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Sep; 153(?):113298. doi:
10.1016/j.biopha.2022.113298
. [PMID: 35759866] - Roshni R Kharadi, George W Sundin. CsrD regulates amylovoran biosynthesis and virulence in Erwinia amylovora in a novel cyclic-di-GMP dependent manner.
Molecular plant pathology.
2022 08; 23(8):1154-1169. doi:
10.1111/mpp.13217
. [PMID: 35396793] - Daqing Jiang, Quan Zeng, Biswarup Banerjee, Haiping Lin, John Srok, Manda Yu, Ching-Hong Yang. The phytopathogen Dickeya dadantii 3937 cpxR locus gene participates in the regulation of virulence and the global c-di-GMP network.
Molecular plant pathology.
2022 08; 23(8):1187-1199. doi:
10.1111/mpp.13219
. [PMID: 35460168] - Roshni R Kharadi, Kayla Selbmann, George W Sundin. A complete twelve-gene deletion null mutant reveals that cyclic di-GMP is a global regulator of phase-transition and host colonization in Erwinia amylovora.
PLoS pathogens.
2022 08; 18(8):e1010737. doi:
10.1371/journal.ppat.1010737
. [PMID: 35914003] - Katiana Simões Lopes, Aline Aparecida Macedo Marques, Karyne Garcia Tafarelo Moreno, Bethânia Rosa Lorençone, Patrícia Regina Terço Leite, Gabriela Pereira da Silva, Ariany Carvalho Dos Santos, Roosevelt Isaías Carvalho Souza, Francielly Mourão Gasparotto, Nadla Soares Cassemiro, Emerson Luiz Botelho Lourenço, Lislaine Maria Klider, Jane Manfron, Denise Brentan Silva, Arquimedes Gasparotto Junior. Small conductance calcium-activated potassium channels and nitric oxide/cGMP pathway mediate cardioprotective effects of Croton urucurana Baill. In hypertensive rats.
Journal of ethnopharmacology.
2022 Jul; 293(?):115255. doi:
10.1016/j.jep.2022.115255
. [PMID: 35398499] - Esther Blanco-Romero, Daniel Garrido-Sanz, David Durán, Rafael Rivilla, Miguel Redondo-Nieto, Marta Martín. Regulation of extracellular matrix components by AmrZ is mediated by c-di-GMP in Pseudomonas ogarae F113.
Scientific reports.
2022 07; 12(1):11914. doi:
10.1038/s41598-022-16162-x
. [PMID: 35831472] - Guilherme Ruiz Leonardi, Caroline Honaiser Lescano, Jose Luiz Costa, Bruna Mazetto, Fernanda Andrade Orsi, Fabiola Zakia Monica. Adenosine diphosphate-induced aggregation is enhanced in platelets obtained from patients with thrombotic primary antiphospholipid syndrome (t-PAPS): Role of P2Y12 -cAMP signaling pathway.
Journal of thrombosis and haemostasis : JTH.
2022 07; 20(7):1699-1711. doi:
10.1111/jth.15724
. [PMID: 35395698] - Dongli Yu, Wen Song, Eddie Yong Jun Tan, Li Liu, Yu Cao, Jan Jirschitzka, Ertong Li, Elke Logemann, Chenrui Xu, Shijia Huang, Aolin Jia, Xiaoyu Chang, Zhifu Han, Bin Wu, Paul Schulze-Lefert, Jijie Chai. TIR domains of plant immune receptors are 2',3'-cAMP/cGMP synthetases mediating cell death.
Cell.
2022 06; 185(13):2370-2386.e18. doi:
10.1016/j.cell.2022.04.032
. [PMID: 35597242] - Daniel Stehle, Min Ze Xu, Tibor Schomber, Michael G Hahn, Frank Schweda, Susanne Feil, Jan R Kraehling, Frank Eitner, Andreas Patzak, Peter Sandner, Robert Feil, Agnès Bénardeau. Novel soluble guanylyl cyclase activators increase glomerular cGMP, induce vasodilation and improve blood flow in the murine kidney.
British journal of pharmacology.
2022 06; 179(11):2476-2489. doi:
10.1111/bph.15586
. [PMID: 34096053] - María Sancho-Alonso, Raquel Garcia-Garcia, Vicent Teruel-Martí, Marta Llansola, Vicente Felipo. Hyperammonemia Enhances GABAergic Neurotransmission in Hippocampus: Underlying Mechanisms and Modulation by Extracellular cGMP.
Molecular neurobiology.
2022 Jun; 59(6):3431-3448. doi:
10.1007/s12035-022-02803-9
. [PMID: 35320456] - Yufan Chen, Mingfa Lv, Zhibin Liang, Zhiqing Liu, Jianuan Zhou, Lian-Hui Zhang. Cyclic di-GMP modulates sessile-motile phenotypes and virulence in Dickeya oryzae via two PilZ domain receptors.
Molecular plant pathology.
2022 06; 23(6):870-884. doi:
10.1111/mpp.13200
. [PMID: 35254732] - Manuela Harloff, Sally Prüschenk, Roland Seifert, Jens Schlossmann. Activation of soluble guanylyl cyclase signalling with cinaciguat improves impaired kidney function in diabetic mice.
British journal of pharmacology.
2022 06; 179(11):2460-2475. doi:
10.1111/bph.15425
. [PMID: 33651375] - Chien-Wei Chen, Luen-Kui Chen, Tai-Ying Huang, De-Ming Yang, Shui-Yu Liu, Pei-Jiun Tsai, Tien-Hua Chen, Heng-Fu Lin, Chi-Chang Juan. Nitric Oxide Mobilizes Intracellular Zn2+ via the GC/cGMP/PKG Signaling Pathway and Stimulates Adipocyte Differentiation.
International journal of molecular sciences.
2022 May; 23(10):. doi:
10.3390/ijms23105488
. [PMID: 35628299] - Meng-Lun Hsieh, Niklas Kiel, Lisa M Miller Jenkins, Wai-Leung Ng, Leslie Knipling, Christopher M Waters, Deborah M Hinton. The Vibrio cholerae master regulator for the activation of biofilm biogenesis genes, VpsR, senses both cyclic di-GMP and phosphate.
Nucleic acids research.
2022 05; 50(8):4484-4499. doi:
10.1093/nar/gkac253
. [PMID: 35438787] - Biswarup Banerjee, Quan Zeng, Manda Yu, Brian Y Hsueh, Christopher M Waters, Ching-Hong Yang. Quorum-Sensing Master Regulator VfmE Is a c-di-GMP Effector That Controls Pectate Lyase Production in the Phytopathogen Dickeya dadantii.
Microbiology spectrum.
2022 04; 10(2):e0180521. doi:
10.1128/spectrum.01805-21
. [PMID: 35352959] - Laura Barrientos-Moreno, María Antonia Molina-Henares, María Isabel Ramos-González, Manuel Espinosa-Urgel. Role of the Transcriptional Regulator ArgR in the Connection between Arginine Metabolism and c-di-GMP Signaling in Pseudomonas putida.
Applied and environmental microbiology.
2022 04; 88(7):e0006422. doi:
10.1128/aem.00064-22
. [PMID: 35254100] - Nina A Dzhoyashvili, Seethalakshmi R Iyer, Horng H Chen, John C Burnett. MANP (M-Atrial Natriuretic Peptide) Reduces Blood Pressure and Furosemide-Induced Increase in Aldosterone in Hypertension.
Hypertension (Dallas, Tex. : 1979).
2022 04; 79(4):750-760. doi:
10.1161/hypertensionaha.121.18837
. [PMID: 35045724] - Yunni Chen, Chenglong Xu, Huilin Yang, Zhenying Liu, Zhibin Zhang, Riming Yan, Du Zhu. L-Arginine enhanced perylenequinone production in the endophytic fungus Shiraia sp. Slf14(w) via NO signaling pathway.
Applied microbiology and biotechnology.
2022 Apr; 106(7):2619-2636. doi:
10.1007/s00253-022-11877-3
. [PMID: 35291023] - Chuan-Yu Peng, Ling Hu, Zi-Jian Wu, Rong-Lin Cai, Jie Wang. [Effect of moxibustion on inflammatory pain and N-methyl-D aspartic acid receptor-nitric oxide-cyclic GMP pathway in spinal cord of adjuvant arthritis rats].
Zhen ci yan jiu = Acupuncture research.
2022 Mar; 47(3):250-5. doi:
10.13702/j.1000-0607.20210557
. [PMID: 35319843] - Bushra Shaukat, Malik Hassan Mehmood, Shahid Shah, Haseeb Anwar. Ziziphus Oxyphylla hydro-methanolic extract ameliorates hypertension in L-NAME induced hypertensive rats through NO/cGMP pathway and suppression of oxidative stress related inflammatory biomarkers.
Journal of ethnopharmacology.
2022 Mar; 285(?):114825. doi:
10.1016/j.jep.2021.114825
. [PMID: 34774683] - Maria Duszyn, Brygida Świeżawska-Boniecka, Monika Skorupa, Krzysztof Jaworski, Adriana Szmidt-Jaworska. BdGUCD1 and Cyclic GMP Are Required for Responses of Brachypodium distachyon to Fusarium pseudograminearum in the Mechanism Involving Jasmonate.
International journal of molecular sciences.
2022 Feb; 23(5):. doi:
10.3390/ijms23052674
. [PMID: 35269814] - William J Moss, Caitlyn E Patterson, Alexander K Jochmans, Kevin M Brown. Functional Analysis of the Expanded Phosphodiesterase Gene Family in Toxoplasma gondii Tachyzoites.
mSphere.
2022 02; 7(1):e0079321. doi:
10.1128/msphere.00793-21
. [PMID: 35107337] - Min Yan, Yan Wang, Ritesh Balaso Watharkar, Yunfeng Pu, Cuiyun Wu, Minjuan Lin, Dengyang Lu, Mingzhe Liu, Jingkai Bao, Yilei Xia. Physicochemical and antioxidant activity of fruit harvested from eight jujube (Ziziphus jujuba Mill.) cultivars at different development stages.
Scientific reports.
2022 02; 12(1):2272. doi:
10.1038/s41598-022-06313-5
. [PMID: 35145206] - Shin-Sook Yoon, Hyuk-Woo Kwon, Jung-Hae Shin, Man Hee Rhee, Chang-Eun Park, Dong-Ha Lee. Anti-Thrombotic Effects of Artesunate through Regulation of cAMP and PI3K/MAPK Pathway on Human Platelets.
International journal of molecular sciences.
2022 Jan; 23(3):. doi:
10.3390/ijms23031586
. [PMID: 35163507] - Jerzy Bełtowski, Krzysztof Wiórkowski. Role of Hydrogen Sulfide and Polysulfides in the Regulation of Lipolysis in the Adipose Tissue: Possible Implications for the Pathogenesis of Metabolic Syndrome.
International journal of molecular sciences.
2022 Jan; 23(3):. doi:
10.3390/ijms23031346
. [PMID: 35163277] - Gaoge Xu, Lichuan Zhou, Guoliang Qian, Fengquan Liu. Diguanylate Cyclase and Phosphodiesterase Interact To Maintain the Specificity of Cyclic di-GMP Signaling in the Regulation of Antibiotic Synthesis in Lysobacter enzymogenes.
Applied and environmental microbiology.
2022 01; 88(2):e0189521. doi:
10.1128/aem.01895-21
. [PMID: 34757823] - Yapeng Hou, Jun Li, Yan Ding, Yong Cui, Hongguang Nie. Luteolin attenuates lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome by activating alveolar epithelial sodium channels via cGMP/PI3K pathway.
Journal of ethnopharmacology.
2022 Jan; 282(?):114654. doi:
10.1016/j.jep.2021.114654
. [PMID: 34537283] - Brandon A Kemp, Nancy L Howell, John J Gildea, Susanna R Keller, David L Brautigan, Robert M Carey. Renal AT2 Receptors Mediate Natriuresis via Protein Phosphatase PP2A.
Circulation research.
2022 01; 130(1):96-111. doi:
10.1161/circresaha.121.319519
. [PMID: 34794320] - Xiaotong Yu, Jing Yu, Hong Dai, Chenyun Deng, Xudong Sun, Sijie Long, Zhujun Jiang, Hongyan Jin, Zhu Guan, Zhenjun Yang. Novel formulation of c-di-GMP with cytidinyl/cationic lipid reverses T cell exhaustion and activates stronger anti-tumor immunity.
Theranostics.
2022; 12(15):6723-6739. doi:
10.7150/thno.71010
. [PMID: 36185614] - Ilkay Erdogan Orhan, Abdur Rauf, Muhammad Saleem, Anees Ahmed Khalil. Natural Molecules as Talented Inhibitors of Nucleotide Pyrophosphatases/ Phosphodiesterases (PDEs).
Current topics in medicinal chemistry.
2022; 22(3):209-228. doi:
10.2174/1568026621666210909164118
. [PMID: 34503407] - Ying Wen, Ying Wang, Shouwen Chen, Xiangshan Zhou, Yuanxing Zhang, Dahai Yang, Gabriel Núñez, Qin Liu. Dysregulation of Cytosolic c-di-GMP in Edwardsiella piscicida Promotes Cellular Non-Canonical Ferroptosis.
Frontiers in cellular and infection microbiology.
2022; 12(?):825824. doi:
10.3389/fcimb.2022.825824
. [PMID: 35186798] - Víctor I Viruega-Góngora, Iris S Acatitla-Jácome, David Zamorano-Sánchez, Sandra R Reyes-Carmona, María L Xiqui-Vázquez, Beatriz Eugenia Baca, Alberto Ramírez-Mata. The GGDEF-EAL protein CdgB from Azospirillum baldaniorum Sp245, is a dual function enzyme with potential polar localization.
PloS one.
2022; 17(11):e0278036. doi:
10.1371/journal.pone.0278036
. [PMID: 36417483] - Yoshio Takei. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors.
General and comparative endocrinology.
2022 01; 315(?):113797. doi:
10.1016/j.ygcen.2021.113797
. [PMID: 33957096] - Masashi Tawa, Takashi Shimosato, Keisuke Nakagawa, Tomio Okamura, Mamoru Ohkita. Soluble Guanylate Cyclase-Mediated Relaxation in Aortas from Rats with Renovascular Hypertension.
Pharmacology.
2022; 107(3-4):235-240. doi:
10.1159/000520655
. [PMID: 34929695] - Liting Hou, Xiaoming Yu, Yuanyuan Zhang, Luping Du, Yuanpeng Zhang, Haiwei Cheng, Qisheng Zheng, Jin Chen, Jibo Hou. Enhanced Immune Responses in Mice Induced by the c-di-GMP Adjuvanted Inactivated Vaccine for Pseudorabies Virus.
Frontiers in immunology.
2022; 13(?):845680. doi:
10.3389/fimmu.2022.845680
. [PMID: 35432301] - S Jeson Sangaralingham, Kanupriya Whig, Satyamaheshwar Peddibhotla, R Jason Kirby, Hampton E Sessions, Patrick R Maloney, Paul M Hershberger, Heather Mose-Yates, Becky L Hood, Stefan Vasile, Shuchong Pan, Ye Zheng, Siobhan Malany, John C Burnett. Discovery of small molecule guanylyl cyclase A receptor positive allosteric modulators.
Proceedings of the National Academy of Sciences of the United States of America.
2021 12; 118(52):. doi:
10.1073/pnas.2109386118
. [PMID: 34930837] - Agnès Bénardeau, Antje Kahnert, Tibor Schomber, Jutta Meyer, Mira Pavkovic, Axel Kretschmer, Bettina Lawrenz, Elke Hartmann, Ilka Mathar, Joerg Hueser, Jan R Kraehling, Frank Eitner, Michael G Hahn, Johannes-Peter Stasch, Peter Sandner. Runcaciguat, a novel soluble guanylate cyclase activator, shows renoprotection in hypertensive, diabetic, and metabolic preclinical models of chronic kidney disease.
Naunyn-Schmiedeberg's archives of pharmacology.
2021 12; 394(12):2363-2379. doi:
10.1007/s00210-021-02149-4
. [PMID: 34550407] - Lin Zhu, Arshna Qureshi, Mohamed Awad, Alfred Hausladen, Silvia Perez-Protto, Samir Q Latifi, Daniel J Lebovitz, Kenneth Chavin, Jonathan S Stamler, James D Reynolds. A Novel Method to Improve Perfusion of Ex Vivo Pumped Human Kidneys.
Annals of surgery.
2021 12; 274(6):e610-e615. doi:
10.1097/sla.0000000000003702
. [PMID: 31804390] - Daan 't Hart, Jinhua Li, Johan van der Vlag, Tom Nijenhuis. Repurposing Riociguat to Target a Novel Paracrine Nitric Oxide-TRPC6 Pathway to Prevent Podocyte Injury.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212485
. [PMID: 34830371] - Sheng Zheng, Min Su, Lu Wang, Tengguo Zhang, Juan Wang, Huichun Xie, Xuexia Wu, Syed Inzimam Ul Haq, Quan-Sheng Qiu. Small signaling molecules in plant response to cold stress.
Journal of plant physiology.
2021 Nov; 266(?):153534. doi:
10.1016/j.jplph.2021.153534
. [PMID: 34601338] - Laetitia Chauve, Francesca Hodge, Sharlene Murdoch, Fatemeh Masoudzadeh, Harry-Jack Mann, Andrea F Lopez-Clavijo, Hanneke Okkenhaug, Greg West, Bebiana C Sousa, Anne Segonds-Pichon, Cheryl Li, Steven W Wingett, Hermine Kienberger, Karin Kleigrewe, Mario de Bono, Michael J O Wakelam, Olivia Casanueva. Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans.
PLoS biology.
2021 11; 19(11):e3001431. doi:
10.1371/journal.pbio.3001431
. [PMID: 34723964] - Melanie Reinero, Maurice Beghetti, Piergiorgio Tozzi, Ludwig K von Segesser, Michele Samaja, Giuseppina Milano. Nitric Oxide-cGMP Pathway Modulation in an Experimental Model of Hypoxic Pulmonary Hypertension.
Journal of cardiovascular pharmacology and therapeutics.
2021 11; 26(6):665-676. doi:
10.1177/10742484211014162
. [PMID: 33969747] - Komal Thapa, Thakur Gurjeet Singh, Amarjot Kaur. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury.
Life sciences.
2021 Oct; 282(?):119843. doi:
10.1016/j.lfs.2021.119843
. [PMID: 34298037] - Yuting Huang, Kai Zhang, Miao Liu, Jing Su, Xiaoyan Qin, Xiao Wang, Jing Zhang, Sheng Li, Guanwei Fan. An herbal preparation ameliorates heart failure with preserved ejection fraction by alleviating microvascular endothelial inflammation and activating NO-cGMP-PKG pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Oct; 91(?):153633. doi:
10.1016/j.phymed.2021.153633
. [PMID: 34320423] - Wolfgang Kreisel, Adhara Lazaro, Jonel Trebicka, Markus Grosse Perdekamp, Annette Schmitt-Graeff, Peter Deibert. Cyclic GMP in Liver Cirrhosis-Role in Pathophysiology of Portal Hypertension and Therapeutic Implications.
International journal of molecular sciences.
2021 Sep; 22(19):. doi:
10.3390/ijms221910372
. [PMID: 34638713] - Kaihuai Li, Gaoge Xu, Bo Wang, Guichun Wu, Rongxian Hou, Fengquan Liu. The predatory soil bacterium Lysobacter reprograms quorum sensing system to regulate antifungal antibiotic production in a cyclic-di-GMP-independent manner.
Communications biology.
2021 09; 4(1):1131. doi:
10.1038/s42003-021-02660-7
. [PMID: 34561536] - Susana S Correia, Guang Liu, Sarah Jacobson, Sylvie G Bernier, Jenny V Tobin, Chad D Schwartzkopf, Emily Atwater, Elisabeth Lonie, Sam Rivers, Andrew Carvalho, Peter Germano, Kim Tang, Rajesh R Iyengar, Mark G Currie, John R Hadcock, Christopher J Winrow, Juli E Jones. The CNS-penetrant soluble guanylate cyclase stimulator CYR119 attenuates markers of inflammation in the central nervous system.
Journal of neuroinflammation.
2021 Sep; 18(1):213. doi:
10.1186/s12974-021-02275-z
. [PMID: 34537066] - Gabriele Serreli, Micaela Rita Naitza, Sonia Zodio, Vera Piera Leoni, Martina Spada, Maria Paola Melis, Anna Boronat, Monica Deiana. Ferulic Acid Metabolites Attenuate LPS-Induced Inflammatory Response in Enterocyte-like Cells.
Nutrients.
2021 Sep; 13(9):. doi:
10.3390/nu13093152
. [PMID: 34579029] - Mateusz Kwiatkowski, Aloysius Wong, Anna Kozakiewicz-Piekarz, Christoph Gehring, Krzysztof Jaworski. In Search of Monocot Phosphodiesterases: Identification of a Calmodulin Stimulated Phosphodiesterase from Brachypodium distachyon.
International journal of molecular sciences.
2021 Sep; 22(17):. doi:
10.3390/ijms22179654
. [PMID: 34502563] - Ekram Nemr Abd Al Haleem, Fatma Al-Zahraa Mohamed Ibrahim, Sawsan Abo Bakr Zaytoon, Hossam Mohamed Mohamed Arafa. Possible protective effect of TNF-α inhibition and triad NO/cGMP/VEGF activation on gastric ulcer in rats.
Canadian journal of physiology and pharmacology.
2021 Sep; 99(9):864-874. doi:
10.1139/cjpp-2020-0725
. [PMID: 33400612] - Akanksha Kakkar, Raj Kumar Verma, Biswajit Samal, Subhadeep Chatterjee. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae.
Environmental microbiology.
2021 09; 23(9):5433-5462. doi:
10.1111/1462-2920.15664
. [PMID: 34240791] - Qingtong Wang, Ying Wang, Toni M West, Yongming Liu, Gopireddy R Reddy, Federica Barbagallo, Bing Xu, Qian Shi, Bingqing Deng, Wei Wei, Yang K Xiang. Carvedilol induces biased β1 adrenergic receptor-nitric oxide synthase 3-cyclic guanylyl monophosphate signalling to promote cardiac contractility.
Cardiovascular research.
2021 08; 117(10):2237-2251. doi:
10.1093/cvr/cvaa266
. [PMID: 32956449] - Siu-Hin Wan, Paul M McKie, Joshua P Slusser, John C Burnett, David O Hodge, Horng H Chen. Effects of phosphodiesterase V inhibition alone and in combination with BNP on cardiovascular and renal response to volume load in human preclinical diastolic dysfunction.
Physiological reports.
2021 08; 9(16):e14974. doi:
10.14814/phy2.14974
. [PMID: 34405565] - Xu-Peng Wang, Wei-Chao Zheng, Yang Bai, Yan Li, Yue Xin, Jing-Zhou Wang, Yu-Lin Chang, Li-Min Zhang. Carbon Monoxide-Releasing Molecule-3 Alleviates Kupffer Cell Pyroptosis Induced by Hemorrhagic Shock and Resuscitation via sGC-cGMP Signal Pathway.
Inflammation.
2021 Aug; 44(4):1330-1344. doi:
10.1007/s10753-021-01419-w
. [PMID: 33575924] - Milad Shirvaliloo. Targeting the SARS-CoV-2 3CLpro and NO/cGMP/PDE5 pathway in COVID-19: a commentary on PDE5 inhibitors.
Future cardiology.
2021 08; 17(5):765-768. doi:
10.2217/fca-2020-0201
. [PMID: 33576273] - Daniela Martini, Raúl Domínguez-Perles, Alice Rosi, Michele Tassotti, Donato Angelino, Sonia Medina, Cristian Ricci, Alexandre Guy, Camille Oger, Letizia Gigliotti, Thierry Durand, Mirko Marino, Hans Gottfried-Genieser, Marisa Porrini, Monica Antonini, Alessandra Dei Cas, Riccardo C Bonadonna, Federico Ferreres, Francesca Scazzina, Furio Brighenti, Patrizia Riso, Cristian Del Bo', Pedro Mena, Angel Gil-Izquierdo, Daniele Del Rio. Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study.
Nutrients.
2021 Jul; 13(7):. doi:
10.3390/nu13072399
. [PMID: 34371907] - Eriko Okuyama, Masahito Kawatani, Junichi Hashimoto, Keisuke Tanimoto, Manabu Hashimoto, Kazumasa Matsumoto-Miyai. The nitric oxide-cyclic guanosine monophosphate pathway inhibits the bladder ATP release in response to a physiological or pathological stimulus.
Physiological reports.
2021 07; 9(14):e14938. doi:
10.14814/phy2.14938
. [PMID: 34288526] - Davoud Ahmadimoghaddam, Mohammad Zarei, Saeed Mohammadi, Zohreh Izadidastenaei, Iraj Salehi. Bupleurum falcatum L. alleviates nociceptive and neuropathic pain: Potential mechanisms of action.
Journal of ethnopharmacology.
2021 Jun; 273(?):113990. doi:
10.1016/j.jep.2021.113990
. [PMID: 33689798] - Maria Duszyn, Brygida Świeżawska-Boniecka, Aloysius Wong, Krzysztof Jaworski, Adriana Szmidt-Jaworska. In Vitro Characterization of Guanylyl Cyclase BdPepR2 from Brachypodium distachyon Identified through a Motif-Based Approach.
International journal of molecular sciences.
2021 Jun; 22(12):. doi:
10.3390/ijms22126243
. [PMID: 34200573] - Dileep Urimi, Ronja Widenbring, Raúl Oswaldo Pérez García, Lars Gedda, Katarina Edwards, Thorsteinn Loftsson, Nicolaas Schipper. Formulation development and upscaling of lipid nanocapsules as a drug delivery system for a novel cyclic GMP analogue intended for retinal drug delivery.
International journal of pharmaceutics.
2021 Jun; 602(?):120640. doi:
10.1016/j.ijpharm.2021.120640
. [PMID: 33901599] - Vinita Subramanya, Di Zhao, Pamela Ouyang, Wendy Ying, Dhananjay Vaidya, Chiadi E Ndumele, Joao A Lima, Eliseo Guallar, Ron C Hoogeveen, Sanjiv J Shah, Susan R Heckbert, David A Kass, Wendy S Post, Erin D Michos. Cyclic guanosine monophosphate and 10-year change in left ventricular mass: the Multi-Ethnic Study of Atherosclerosis (MESA).
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2021 Jun; 26(4):309-317. doi:
10.1080/1354750x.2021.1893811
. [PMID: 33715578] - Nikhil K Tulsian, Valerie Jia-En Sin, Hwee-Ling Koh, Ganesh S Anand. Development of Phosphodiesterase-Protein-Kinase Complexes as Novel Targets for Discovery of Inhibitors with Enhanced Specificity.
International journal of molecular sciences.
2021 May; 22(10):. doi:
10.3390/ijms22105242
. [PMID: 34063491] - Andrea de la Fuente-Alonso, Marta Toral, Alvaro Alfayate, María Jesús Ruiz-Rodríguez, Elena Bonzón-Kulichenko, Gisela Teixido-Tura, Sara Martínez-Martínez, María José Méndez-Olivares, Dolores López-Maderuelo, Ileana González-Valdés, Eusebio Garcia-Izquierdo, Susana Mingo, Carlos E Martín, Laura Muiño-Mosquera, Julie De Backer, J Francisco Nistal, Alberto Forteza, Arturo Evangelista, Jesús Vázquez, Miguel R Campanero, Juan Miguel Redondo. Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO.
Nature communications.
2021 05; 12(1):2628. doi:
10.1038/s41467-021-22933-3
. [PMID: 33976159] - Pedro Dorado-Morales, Igor Martínez, Virginia Rivero-Buceta, Eduardo Díaz, Heike Bähre, Iñigo Lasa, Cristina Solano. Elevated c-di-GMP levels promote biofilm formation and biodesulfurization capacity of Rhodococcus erythropolis.
Microbial biotechnology.
2021 05; 14(3):923-937. doi:
10.1111/1751-7915.13689
. [PMID: 33128507] - Kangwen Xu, Danyu Shen, Nianda Yang, Shan-Ho Chou, Mark Gomelsky, Guoliang Qian. Coordinated control of the type IV pili and c-di-GMP-dependent antifungal antibiotic production in Lysobacter by the response regulator PilR.
Molecular plant pathology.
2021 05; 22(5):602-617. doi:
10.1111/mpp.13046
. [PMID: 33709522]