1,3,7-trimethylurate (BioDeep_00000002392)
Secondary id: BioDeep_00000405513
human metabolite Endogenous blood metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H10N4O3 (210.075287)
中文名称: 1,3,7-三甲基尿酸
谱图信息:
最多检出来源 Viridiplantae(plant) 29.79%
Last reviewed on 2024-09-14.
Cite this Page
1,3,7-trimethylurate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/1,3,7-trimethylurate (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000002392). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: Cn1c(=O)c2c(nc(O)n2C)n(C)c1=O
InChI: InChI=1S/C8H10N4O3/c1-10-4-5(9-7(10)14)11(2)8(15)12(3)6(4)13/h1-3H3,(H,9,14)
描述信息
1,3,7-Trimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 1,3,7-Trimethyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID:11712316, 15833286, 3506820, 15013152).
同义名列表
14 个代谢物同义名
1,3,7-Trimethyl-2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione; 8-Hydroxy-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione; 7,9-Dihydro-1,3,7-trimethyl-1H-purine-2,6,8(3H)-trione; 1,3,7-Trimethyl-7,9-dihydro-1H-purine-2,6,8(3H)-trione; 2,6,8-Trihydroxy-1,3,7-trimethylpurine; 1,3, 7-Trimethyluric acid; 1,3,7-Trimethyluric acid; 1,3,7-Trimethylic acid; 1,3,7-Trimethylurate; Trimethyl uric acid; 1,3,7-Trimethylate; 8-Oxy-caffeine; 8-Oxocaffeine; 1,3,7-Trimethyluric acid
数据库引用编号
20 个数据库交叉引用编号
- ChEBI: CHEBI:691622
- KEGG: C16361
- PubChem: 79437
- HMDB: HMDB0002123
- Metlin: METLIN58099
- ChEMBL: CHEMBL1767
- Wikipedia: 1,3,7-Trimethyluric_acid
- MetaCyc: CPD-12480
- KNApSAcK: C00051957
- foodb: FDB022854
- chemspider: 71754
- CAS: 5415-44-1
- PMhub: MS000002508
- PubChem: 47205669
- PDB-CCD: EXU
- NIKKAJI: J2.233K
- RefMet: 1,3,7-Trimethyluric acid
- KNApSAcK: 691622
- LOTUS: LTS0180793
- wikidata: Q18343388
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
9 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- caffeine degradation V (bacteria, via trimethylurate):
1,6,8-trimethylallantoate + H2O ⟶ N,N'-dimethylurea + N-methylurea + glyoxylate
- caffeine degradation II:
caffeine ⟶ 1,3,7-trimethylurate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(1)
- caffeine degradation II:
1,3,7-trimethylurate + a methylated methyl donor ⟶ 1,3,7,9-tetramethylurate + a demethylated methyl donor
COVID-19 Disease Map(0)
PathBank(5)
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
- Caffeine Metabolism:
Oxygen + Paraxanthine + Water ⟶ 1,7-Dimethyluric acid + Hydrogen peroxide
3 个相关的物种来源信息
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 9606 - Homo sapiens: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Martin Kertys, Nela Žideková, Kristián Pršo, Katarína Maráková, Katarína Kmeťová, Juraj Mokrý. Simultaneous determination of caffeine and its metabolites in rat plasma by UHPLC-MS/MS.
Journal of separation science.
2021 Dec; 44(23):4274-4283. doi:
10.1002/jssc.202100604
. [PMID: 34626085] - Markéta Paloncýová, Veronika Navrátilová, Karel Berka, Alessandro Laio, Michal Otyepka. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4.
Journal of chemical theory and computation.
2016 Apr; 12(4):2101-9. doi:
10.1021/acs.jctc.6b00075
. [PMID: 26967371] - Michael E Rybak, Maya R Sternberg, Ching-I Pao, Namanjeet Ahluwalia, Christine M Pfeiffer. Urine excretion of caffeine and select caffeine metabolites is common in the U.S. population and associated with caffeine intake.
The Journal of nutrition.
2015 Apr; 145(4):766-74. doi:
10.3945/jn.114.205476
. [PMID: 25833779] - Hideo Nakabayashi, Takashi Hashimoto, Hitoshi Ashida, Shin Nishiumi, Kazuki Kanazawa. Inhibitory effects of caffeine and its metabolites on intracellular lipid accumulation in murine 3T3-L1 adipocytes.
BioFactors (Oxford, England).
2008; 34(4):293-302. doi:
10.3233/bio-2009-1083
. [PMID: 19850984] - Mirosława Zydroń, Jacek Baranowski, Irena Baranowska. Separation, pre-concentration, and HPLC analysis of methylxanthines in urine samples.
Journal of separation science.
2004 Oct; 27(14):1166-72. doi:
10.1002/jssc.200401841
. [PMID: 15537072] - Andreas Labedzki, Jeroen Buters, Wafaâ Jabrane, Uwe Fuhr. Differences in caffeine and paraxanthine metabolism between human and murine CYP1A2.
Biochemical pharmacology.
2002 Jun; 63(12):2159-67. doi:
10.1016/s0006-2952(02)01019-5
. [PMID: 12110375] - V B Bhat, G R Sridhar, K M Madyastha. Efficient scavenging of hydroxyl radicals and inhibition of lipid peroxidation by novel analogues of 1,3,7-trimethyluric acid.
Life sciences.
2001 Dec; 70(4):381-93. doi:
10.1016/s0024-3205(01)01484-9
. [PMID: 11798008] - S C Yuan, C J Wang, H W Kuo, M C Maa, Y S Hsieh. Effect of tea and coffee consumption on serum uric acid levels by liquid-chromatographic and uricase methods.
Bulletin of environmental contamination and toxicology.
2000 Sep; 65(3):300-6. doi:
10.1007/s0012800128
. [PMID: 10903352] - Y Benchekroun, S Dautraix, M Désage, J L Brazier. Isotopic effects on retention times of caffeine and its metabolites 1,3,7-trimethyluric acid, theophylline, theobromine and paraxanthine.
Journal of chromatography. B, Biomedical sciences and applications.
1997 Jan; 688(2):245-54. doi:
10.1016/s0378-4347(96)00323-4
. [PMID: 9061462]