Coproporphyrin I (BioDeep_00000005943)

 

Secondary id: BioDeep_00000399615

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


3-[9,14,19-tris(2-carboxyethyl)-5,10,15,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),2,4,6(24),7,9,11,13(22),14,16,18-undecaen-4-yl]propanoic acid

化学式: C36H38N4O8 (654.269)
中文名称:
谱图信息: 最多检出来源 Viridiplantae(plant) 17.12%

分子结构信息

SMILES: CC1=C(C2=CC3=NC(=CC4=C(C(=C(N4)C=C5C(=C(C(=N5)C=C1N2)CCC(=O)O)C)CCC(=O)O)C)C(=C3C)CCC(=O)O)CCC(=O)O
InChI: InChI=1S/C36H38N4O8/c1-17-21(5-9-33(41)42)29-14-26-19(3)23(7-11-35(45)46)31(39-26)16-28-20(4)24(8-12-36(47)48)32(40-28)15-27-18(2)22(6-10-34(43)44)30(38-27)13-25(17)37-29/h13-16,37,40H,5-12H2,1-4H3,(H,41,42)(H,43,44)(H,45,46)(H,47,48)

描述信息

Coproporphyrin I is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrin I is a tetrapyrrole dead-end product from the spontaneous oxidation of the methylene bridges of coproporphynogen, arising from heme synthesis and secreted in feces and urine. Increased levels of coproporphyrins can indicate congenital erythropoietic porphyria or sideroblastic anaemia. Porphyria is a pathological state characterised by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: 1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, 2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, 3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors includes disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss from, and diminished utilization of coproporphyrinogen in the hepatocytes, which may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine; decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion, so that the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function and intrahepatic cholestasis; and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms. (PMID: 3327428).
Coproporhyrin I is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life.

同义名列表

8 个代谢物同义名

3-[9,14,19-tris(2-carboxyethyl)-5,10,15,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),2,4,6(24),7,9,11,13(22),14,16,18-undecaen-4-yl]propanoic acid; 3,8,13,18-Tetramethyl-21H,23H-porphine-2,7,12,17-tetrapropionic acid; 3,8,13,18-Tetramethyl-21H,23H-porphine-2,7,12,17-tetrapropionate; 3,8,13,17-Tetramethylporphyrin-2,7,12,18-tetrapropanoic acid; 3,8,13,18-Tetramethyl-2,7,12,17-porphinetetrapropionic acid; 3,8,13,17-Tetramethylporphyrin-2,7,12,18-tetrapropanoate; 3,8,13,18-Tetramethyl-2,7,12,17-porphinetetrapropionate; Coproporphyrin I



数据库引用编号

14 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

18 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(18)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 3 ABCB1, CPOX, GNAT3
Mitochondrion membrane 1 ABCG2
Nucleus 1 ALAD
cytosol 5 ALAD, CPOX, PRF1, SLC22A7, UROS
mitochondrial membrane 1 ABCG2
nucleoplasm 1 ABCG2
Cell membrane 9 ABCB1, ABCG2, PRF1, SLC10A1, SLC22A7, SLCO1A2, SLCO1B1, SLCO1B3, SLCO2B1
Multi-pass membrane protein 15 ABCB1, ABCC2, ABCC3, ABCG2, PRF1, SLC10A1, SLC22A6, SLC22A7, SLC22A8, SLC25A16, SLCO1A2, SLCO1B1, SLCO1B3, SLCO2B1, UCP1
cell surface 3 ABCB1, ABCC2, EPO
mitochondrial inner membrane 2 SLC25A16, UCP1
acrosomal vesicle 1 GNAT3
plasma membrane 14 ABCB1, ABCC2, ABCC3, ABCG2, GNAT3, PRF1, SLC10A1, SLC22A6, SLC22A7, SLC22A8, SLCO1A2, SLCO1B1, SLCO1B3, SLCO2B1
Membrane 14 ABCB1, ABCC2, ABCC3, ABCG2, CPOX, PRF1, SLC10A1, SLC22A6, SLC22A7, SLC25A16, SLCO1A2, SLCO1B1, SLCO1B3, SLCO2B1
apical plasma membrane 8 ABCB1, ABCC2, ABCG2, GNAT3, SLC22A7, SLC22A8, SLCO1A2, SLCO2B1
basolateral plasma membrane 9 ABCC3, SLC10A1, SLC22A6, SLC22A7, SLC22A8, SLCO1A2, SLCO1B1, SLCO1B3, SLCO2B1
caveola 1 SLC22A6
extracellular exosome 5 ABCB1, ALAD, EPO, SLC22A6, SLC22A8
extracellular space 1 EPO
intercellular canaliculus 1 ABCC2
mitochondrion 4 CPOX, SLC25A16, UCP1, UROS
protein-containing complex 2 GNAT3, SLC22A6
Secreted 2 EPO, PRF1
extracellular region 3 ALAD, EPO, PRF1
photoreceptor inner segment 1 GNAT3
photoreceptor outer segment 1 GNAT3
Apical cell membrane 5 ABCB1, ABCC2, ABCG2, SLC22A7, SLCO2B1
Mitochondrion inner membrane 2 SLC25A16, UCP1
Membrane raft 1 ABCG2
mitochondrial intermembrane space 1 CPOX
lateral plasma membrane 1 SLC22A8
axoneme 1 GNAT3
brush border membrane 1 ABCG2
Basolateral cell membrane 7 ABCC3, SLC22A6, SLC22A7, SLC22A8, SLCO1B1, SLCO1B3, SLCO2B1
endosome lumen 1 PRF1
heterotrimeric G-protein complex 1 GNAT3
cell body 1 EPO
basal plasma membrane 7 ABCC3, SLC22A6, SLC22A7, SLCO1A2, SLCO1B1, SLCO1B3, SLCO2B1
ficolin-1-rich granule lumen 1 ALAD
secretory granule lumen 2 ALAD, EPO
immunological synapse 1 PRF1
Basal cell membrane 6 ABCC3, SLC22A6, SLCO1A2, SLCO1B1, SLCO1B3, SLCO2B1
external side of apical plasma membrane 2 ABCB1, ABCG2
[Isoform 1]: Cytoplasm, cytosol 1 SLC22A7
Cytolytic granule 1 PRF1
cytolytic granule lumen 1 PRF1
[Isoform 2]: Basolateral cell membrane 1 SLC22A7


文献列表

  • Hiroaki Takubo, Koji Bessho, Ryosuke Watari, Ryota Shigemi. Quantitative prediction of OATP1B-mediated drug-drug interactions using endogenous biomarker coproporphyrin I. Xenobiotica; the fate of foreign compounds in biological systems. 2022 Apr; 52(4):397-404. doi: 10.1080/00498254.2022.2085210. [PMID: 35638858]
  • Emi Kimoto, Chester Costales, Mark A West, Yi-An Bi, Manoli Vourvahis, A David Rodrigues, Manthena V S Varma. Biomarker-Informed Model-Based Risk Assessment of Organic Anion Transporting Polypeptide 1B Mediated Drug-Drug Interactions. Clinical pharmacology and therapeutics. 2022 02; 111(2):404-415. doi: 10.1002/cpt.2434. [PMID: 34605015]
  • Mikko Neuvonen, Aleksi Tornio, Päivi Hirvensalo, Janne T Backman, Mikko Niemi. Performance of Plasma Coproporphyrin I and III as OATP1B1 Biomarkers in Humans. Clinical pharmacology and therapeutics. 2021 12; 110(6):1622-1632. doi: 10.1002/cpt.2429. [PMID: 34580865]
  • Hiroyuki Ono, Ryota Tanaka, Yosuke Suzuki, Ayako Oda, Takashi Ozaki, Ryosuke Tatsuta, Keisuke Maeshima, Koji Ishii, Keiko Ohno, Hirotaka Shibata, Hiroki Itoh. Factors Influencing Plasma Coproporphyrin-I Concentration as Biomarker of OATP1B Activity in Patients With Rheumatoid Arthritis. Clinical pharmacology and therapeutics. 2021 10; 110(4):1096-1105. doi: 10.1002/cpt.2375. [PMID: 34319605]
  • Yosuke Suzuki, Yuri Sasamoto, Teruhide Koyama, Chisato Yoshijima, Ayako Oda, Masahiro Nakatochi, Michiaki Kubo, Yukihide Momozawa, Ritei Uehara, Keiko Ohno. Relationship of hemoglobin level and plasma coproporphyrin-I concentrations as an endogenous probe for phenotyping OATP1B. Clinical and translational science. 2021 07; 14(4):1403-1411. doi: 10.1111/cts.12996. [PMID: 33650309]
  • Hiroyuki Takita, Shelby Barnett, Yueping Zhang, Karelle Ménochet, Hong Shen, Kayode Ogungbenro, Aleksandra Galetin. PBPK Model of Coproporphyrin I: Evaluation of the Impact of SLCO1B1 Genotype, Ethnicity, and Sex on its Inter-Individual Variability. CPT: pharmacometrics & systems pharmacology. 2021 02; 10(2):137-147. doi: 10.1002/psp4.12582. [PMID: 33289952]
  • Yosuke Suzuki, Yuri Sasamoto, Teruhide Koyama, Chisato Yoshijima, Masahiro Nakatochi, Michiaki Kubo, Yukihide Momozawa, Ritei Uehara, Keiko Ohno. Substantially Increased Plasma Coproporphyrin-I Concentrations Associated With OATP1B1*15 Allele in Japanese General Population. Clinical and translational science. 2021 01; 14(1):382-388. doi: 10.1111/cts.12889. [PMID: 32961019]
  • Hari V Kalluri, Ryota Kikuchi, Sheryl Coppola, Jeffrey Schmidt, Mohamed-Eslam F Mohamed, Daniel A J Bow, Ahmed H Salem. Coproporphyrin I Can Serve as an Endogenous Biomarker for OATP1B1 Inhibition: Assessment Using a Glecaprevir/Pibrentasvir Clinical Study. Clinical and translational science. 2021 01; 14(1):373-381. doi: 10.1111/cts.12888. [PMID: 33048456]
  • Jacqueline Bezençon, Chitra Saran, Janine Hussner, James J Beaudoin, Yueping Zhang, Hong Shen, John K Fallon, Philip C Smith, Henriette E Meyer Zu Schwabedissen, Kim L R Brouwer. Endogenous Coproporphyrin I and III are Altered in Multidrug Resistance-Associated Protein 2-Deficient (TR-) Rats. Journal of pharmaceutical sciences. 2021 01; 110(1):404-411. doi: 10.1016/j.xphs.2020.10.017. [PMID: 33058892]
  • Sagnik Chatterjee, Sambuddho Mukherjee, L V J Sankara Sivaprasad, Tanvi Naik, Shashyendra Singh Gautam, Bokka Venkata Murali, Avinash Annasao Hadambar, Gowtham Raj Gunti, Vijaykumar Kuchibhotla, Avisek Deyati, Sushma Basavanthappa, Manjunath Ramarao, T Thanga Mariappan, Bradley A Zinker, Yueping Zhang, Michael Sinz, Hong Shen. Transporter Activity Changes in Nonalcoholic Steatohepatitis: Assessment with Plasma Coproporphyrin I and III. The Journal of pharmacology and experimental therapeutics. 2021 01; 376(1):29-39. doi: 10.1124/jpet.120.000291. [PMID: 33127749]
  • Yueping Zhang, Vinay K Holenarsipur, Hamza Kandoussi, Jianing Zeng, T Thanga Mariappan, Michael Sinz, Hong Shen. Detection of Weak Organic Anion-Transporting Polypeptide 1B Inhibition by Probenecid with Plasma-Based Coproporphyrin in Humans. Drug metabolism and disposition: the biological fate of chemicals. 2020 10; 48(10):841-848. doi: 10.1124/dmd.120.000076. [PMID: 32723847]
  • Yueping Zhang, Cliff Chen, Shen-Jue Chen, Xue-Qing Chen, David J Shuster, Pawel D Puszczalo, R Marcus Fancher, Zheng Yang, Michael Sinz, Hong Shen. Absence of OATP1B (Organic Anion-Transporting Polypeptide) Induction by Rifampin in Cynomolgus Monkeys: Determination Using the Endogenous OATP1B Marker Coproporphyrin and Tissue Gene Expression. The Journal of pharmacology and experimental therapeutics. 2020 10; 375(1):139-151. doi: 10.1124/jpet.120.000139. [PMID: 32719071]
  • Xiaomei Gu, Lifei Wang, Jinping Gan, R Marcus Fancher, Yuan Tian, Yang Hong, Yurong Lai, Michael Sinz, Hong Shen. Absorption and Disposition of Coproporphyrin I (CPI) in Cynomolgus Monkeys and Mice: Pharmacokinetic Evidence to Support the Use of CPI to Inform the Potential for Organic Anion-Transporting Polypeptide Inhibition. Drug metabolism and disposition: the biological fate of chemicals. 2020 08; 48(8):724-734. doi: 10.1124/dmd.120.090670. [PMID: 32482623]
  • Yosuke Suzuki, Yuri Sasamoto, Chisato Yoshijima, Ryota Tanaka, Hiroyuki Ono, Tadasuke Ando, Toshitaka Shin, Hiromitsu Mimata, Hiroki Itoh, Keiko Ohno. Simultaneous quantification of coproporphyrin-I and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid in human plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2020 May; 184(?):113202. doi: 10.1016/j.jpba.2020.113202. [PMID: 32114159]
  • Yusei Nakata, Hitoshi Okada, Susumu Itoh, Takashi Kusaka. Developmental changes in urinary coproporphyrin ratio in premature infants. Pediatrics international : official journal of the Japan Pediatric Society. 2020 Jan; 62(1):65-69. doi: 10.1111/ped.14024. [PMID: 31628881]
  • Kit Wun Kathy Cheung, Kenta Yoshida, Sravanthi Cheeti, Buyun Chen, Roland Morley, Iris T Chan, Srikumar Sahasranaman, Lichuan Liu. GDC-0810 Pharmacokinetics and Transporter-Mediated Drug Interaction Evaluation with an Endogenous Biomarker in the First-in-Human, Dose Escalation Study. Drug metabolism and disposition: the biological fate of chemicals. 2019 09; 47(9):966-973. doi: 10.1124/dmd.119.087924. [PMID: 31266752]
  • Sook Wah Yee, Marilyn M Giacomini, Hong Shen, W Griffith Humphreys, Howard Horng, William Brian, Yurong Lai, Deanna L Kroetz, Kathleen M Giacomini. Organic Anion Transporter Polypeptide 1B1 Polymorphism Modulates the Extent of Drug-Drug Interaction and Associated Biomarker Levels in Healthy Volunteers. Clinical and translational science. 2019 07; 12(4):388-399. doi: 10.1111/cts.12625. [PMID: 30982223]
  • Yosuke Suzuki, Hiroyuki Ono, Ryota Tanaka, Fuminori Sato, Yuhki Sato, Keiko Ohno, Hiromitsu Mimata, Hiroki Itoh. Recovery of OATP1B Activity after Living Kidney Transplantation in Patients with End-Stage Renal Disease. Pharmaceutical research. 2019 Feb; 36(4):59. doi: 10.1007/s11095-019-2593-8. [PMID: 30809779]
  • Shelby Barnett, Kayode Ogungbenro, Karelle Ménochet, Hong Shen, W Griffith Humphreys, Aleksandra Galetin. Comprehensive Evaluation of the Utility of 20 Endogenous Molecules as Biomarkers of OATP1B Inhibition Compared with Rosuvastatin and Coproporphyrin I. The Journal of pharmacology and experimental therapeutics. 2019 01; 368(1):125-135. doi: 10.1124/jpet.118.253062. [PMID: 30314992]
  • Annett Kunze, Emmanuel Njumbe Ediage, Lieve Dillen, Mario Monshouwer, Jan Snoeys. Clinical Investigation of Coproporphyrins as Sensitive Biomarkers to Predict Mild to Strong OATP1B-Mediated Drug-Drug Interactions. Clinical pharmacokinetics. 2018 12; 57(12):1559-1570. doi: 10.1007/s40262-018-0648-3. [PMID: 29663259]
  • Shelby Barnett, Kayode Ogungbenro, Karelle Ménochet, Hong Shen, Yurong Lai, W Griffith Humphreys, Aleksandra Galetin. Gaining Mechanistic Insight Into Coproporphyrin I as Endogenous Biomarker for OATP1B-Mediated Drug-Drug Interactions Using Population Pharmacokinetic Modeling and Simulation. Clinical pharmacology and therapeutics. 2018 09; 104(3):564-574. doi: 10.1002/cpt.983. [PMID: 29243231]
  • Manuela Lualdi, Adalberto Cavalleri, Luigi Battaglia, Ambrogio Colombo, Giulia Garrone, Daniele Morelli, Emanuele Pignoli, Elisa Sottotetti, Ermanno Leo. Early detection of colorectal adenocarcinoma: a clinical decision support tool based on plasma porphyrin accumulation and risk factors. BMC cancer. 2018 Aug; 18(1):841. doi: 10.1186/s12885-018-4754-2. [PMID: 30134852]
  • Hong Shen, Lisa Christopher, Yurong Lai, Jiachang Gong, Hamza Kandoussi, Samira Garonzik, Vidya Perera, Tushar Garimella, W Griffith Humphreys. Further Studies to Support the Use of Coproporphyrin I and III as Novel Clinical Biomarkers for Evaluating the Potential for Organic Anion Transporting Polypeptide 1B1 and OATP1B3 Inhibition. Drug metabolism and disposition: the biological fate of chemicals. 2018 08; 46(8):1075-1082. doi: 10.1124/dmd.118.081125. [PMID: 29777022]
  • Hamza Kandoussi, Jianing Zeng, Kumar Shah, Patricia Paterson, Rasa Santockyte, Pathanjali Kadiyala, Hong Shen, Petia Shipkova, Robert Langish, Richard Burrrell, John Easter, Thomas Mariannino, Punit Marathe, Yurong Lai, Yan Zhang, Renuka Pillutla. UHPLC-MS/MS bioanalysis of human plasma coproporphyrins as potential biomarkers for organic anion-transporting polypeptide-mediated drug interactions. Bioanalysis. 2018 May; 10(9):633-644. doi: 10.4155/bio-2017-0246. [PMID: 29749254]
  • Amanda King-Ahmad, Sara Clemens, Ragu Ramanathan, Yanhua Zhang, Nancy Raha, Yizhong Zhang, Christopher Holliman, A David Rodrigues, Fumin Li. A fully automated and validated human plasma LC-MS/MS assay for endogenous OATP biomarkers coproporphyrin-I and coproporphyrin-III. Bioanalysis. 2018 May; 10(9):691-701. doi: 10.4155/bio-2017-0270. [PMID: 29747517]
  • Emmanuel Njumbe Ediage, Lieve Dillen, Ann Vroman, Luc Diels, Annett Kunze, Jan Snoeys, Tom Verhaeghe. Development of an LC-MS method to quantify coproporphyrin I and III as endogenous biomarkers for drug transporter-mediated drug-drug interactions. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2018 Jan; 1073(?):80-89. doi: 10.1016/j.jchromb.2017.12.008. [PMID: 29241088]
  • Ragu Ramanathan, Amanda J King-Ahmad, Christopher L Holliman, A David Rodrigues. A highly selective and sensitive LC-MS/HRMS assay for quantifying coproporphyrins as organic anion-transporting peptide biomarkers. Bioanalysis. 2017 Nov; 9(22):1787-1806. doi: 10.4155/bio-2017-0181. [PMID: 28978230]
  • Hong Shen, Weiqi Chen, Dieter M Drexler, Sandhya Mandlekar, Vinay K Holenarsipur, Eric E Shields, Robert Langish, Kurex Sidik, Jinping Gan, W Griffith Humphreys, Punit Marathe, Yurong Lai. Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects. Drug metabolism and disposition: the biological fate of chemicals. 2017 08; 45(8):908-919. doi: 10.1124/dmd.117.075531. [PMID: 28576766]
  • Jun Kunikata, Hitoshi Okada, Susumu Itoh, Takashi Kusaka. Developmental characteristics of urinary coproporphyrin I/(I + III) ratio. Pediatrics international : official journal of the Japan Pediatric Society. 2016 Oct; 58(10):974-978. doi: 10.1111/ped.12965. [PMID: 26920082]
  • Yurong Lai, Sandhya Mandlekar, Hong Shen, Vinay K Holenarsipur, Robert Langish, Prabhakar Rajanna, Senthilkumar Murugesan, Nilesh Gaud, Sabariya Selvam, Onkar Date, Yaofeng Cheng, Petia Shipkova, Jun Dai, William G Humphreys, Punit Marathe. Coproporphyrins in Plasma and Urine Can Be Appropriate Clinical Biomarkers to Recapitulate Drug-Drug Interactions Mediated by Organic Anion Transporting Polypeptide Inhibition. The Journal of pharmacology and experimental therapeutics. 2016 Sep; 358(3):397-404. doi: 10.1124/jpet.116.234914. [PMID: 27317801]
  • Hong Shen, Jun Dai, Tongtong Liu, Yaofeng Cheng, Weiqi Chen, Chris Freeden, Yingru Zhang, W Griffith Humphreys, Punit Marathe, Yurong Lai. Coproporphyrins I and III as Functional Markers of OATP1B Activity: In Vitro and In Vivo Evaluation in Preclinical Species. The Journal of pharmacology and experimental therapeutics. 2016 May; 357(2):382-93. doi: 10.1124/jpet.116.232066. [PMID: 26907622]
  • Dallas Bednarczyk, Carri Boiselle. Organic anion transporting polypeptide (OATP)-mediated transport of coproporphyrins I and III. Xenobiotica; the fate of foreign compounds in biological systems. 2016; 46(5):457-66. doi: 10.3109/00498254.2015.1085111. [PMID: 26383540]
  • Isabelle Benz-de Bretagne, Noël Zahr, Amélie Le Gouge, Jean-Sébastien Hulot, Caroline Houillier, Khe Hoang-Xuan, Emmanuel Gyan, Séverine Lissandre, Sylvain Choquet, Chantal Le Guellec. Urinary coproporphyrin I/(I + III) ratio as a surrogate for MRP2 or other transporter activities involved in methotrexate clearance. British journal of clinical pharmacology. 2014 Aug; 78(2):329-42. doi: 10.1111/bcp.12326. [PMID: 24433481]
  • N Furuta, C Yaguchi, H Itoh, Y Morishima, N Tamura, M Kato, T Uchida, K Suzuki, K Sugihara, Y Kawabata, N Suzuki, T Sasaki, K Horiuchi, N Kanayama. Immunohistochemical detection of meconium in the fetal membrane, placenta and umbilical cord. Placenta. 2012 Jan; 33(1):24-30. doi: 10.1016/j.placenta.2011.10.007. [PMID: 22041294]
  • Q Wang, L X Ye, H H Zhao, J W Chen, Y K Zhou. Benchmark dose approach for low-level lead induced haematogenesis inhibition and associations of childhood intelligences with ALAD activity and ALA levels. The Science of the total environment. 2011 Apr; 409(10):1806-10. doi: 10.1016/j.scitotenv.2011.01.045. [PMID: 21334730]
  • Albrecht Pfäfflin. Remarks on the acute intermittent porphyria. Annals of clinical biochemistry. 2009 Jul; 46(Pt 4):347-8; author reply 348. doi: 10.1258/acb.2009.009069. [PMID: 19564164]
  • Manonmanii Krishnamohan, Lixia Qi, Paul K S Lam, Michael R Moore, Jack C Ng. Urinary arsenic and porphyrin profile in C57BL/6J mice chronically exposed to monomethylarsonous acid (MMAIII) for two years. Toxicology and applied pharmacology. 2007 Oct; 224(1):89-97. doi: 10.1016/j.taap.2007.04.020. [PMID: 17707874]
  • Yasuyuki Sadzuka, Fumiaki Iwasaki, Ikumi Sugiyama, Kentaro Horiuchi, Toru Hirano, Hidechika Ozawa, Naohiro Kanayama, Takashi Sonobe. Study on liposomalization of zinc-coproporphyrin I as a novel drug in photodynamic therapy. International journal of pharmaceutics. 2007 Jun; 338(1-2):306-9. doi: 10.1016/j.ijpharm.2007.02.003. [PMID: 17349754]
  • Peter Bozek, Milan Hutta, Barbora Hrivnáková. Rapid analysis of porphyrins at low ng/l and microg/l levels in human urine by a gradient liquid chromatography method using octadecylsilica monolithic columns. Journal of chromatography. A. 2005 Aug; 1084(1-2):24-32. doi: 10.1016/j.chroma.2005.06.007. [PMID: 16114232]
  • Jordi To-Figueras, Dolores Ozalla, Carmen Herrero Mateu. Long-standing changes in the urinary profile of porphyrin isomers after clinical remission of porphyria cutanea tarda. Annals of clinical and laboratory science. 2003; 33(3):251-6. doi: . [PMID: 12956438]
  • J P Wang, L Qi, B Zheng, F Liu, M R Moore, J C Ng. Porphyrins as early biomarkers for arsenic exposure in animals and humans. Cellular and molecular biology (Noisy-le-Grand, France). 2002 Dec; 48(8):835-43. doi: . [PMID: 12699241]
  • Floris M J Zuijderhoudt, Johannes S Kamphuis, Willem E Kluitenberg, Jenneke Dorresteijn-de Bok. Precision and accuracy of a HPLC method for measurement of fecal porphyrin concentrations. Clinical chemistry and laboratory medicine. 2002 Oct; 40(10):1036-9. doi: 10.1515/cclm.2002.181. [PMID: 12476945]
  • Y Ding, B Lin, C W Huie. Binding studies of porphyrins to human serum albumin using affinity capillary electrophoresis. Electrophoresis. 2001 Jul; 22(11):2210-6. doi: 10.1002/1522-2683(20017)22:11<2210::aid-elps2210>3.0.co;2-w. [PMID: 11504054]
  • T S So, L Jia, C W Huie. Stacking and separation of coproporphyrin isomers by acetonitrile-salt mixtures in micellar electrokinetic chromatography. Electrophoresis. 2001 Jul; 22(11):2159-66. doi: 10.1002/1522-2683(20017)22:11<2159::aid-elps2159>3.0.co;2-d. [PMID: 11504047]
  • S Aziz, P Kotal, P Leroy, R Servaes, E Eggermont, J Fevery. Bilirubin-IXalpha and -IXbeta pigments, coproporphyrins and bile acids in meconium and stools from full-term and preterm neonates during the first month of life. Acta paediatrica (Oslo, Norway : 1992). 2001 Jan; 90(1):81-7. doi: 10.1080/080352501750064923. [PMID: 11227340]
  • I M Usta, B M Sibai, B M Mercer, B L Kreamer, G R Gourley. Use of maternal plasma level of zinc-coproporphyrin in the prediction of intrauterine passage of meconium: a pilot study. The Journal of maternal-fetal medicine. 2000 Jul; 9(4):201-3. doi: 10.1002/1520-6661(200007/08)9:4<201::aid-mfm2>3.0.co;2-l. [PMID: 11048828]
  • C Depetris-Boldini, R Galetto, M P Videla, R de Kremer Dodelson. Increased excretion of coproporphyrin I in a patient with hereditary tyrosinaemia type I: relevant changes with NTBC treatment. Journal of inherited metabolic disease. 1999 May; 22(3):227-30. doi: 10.1023/a:1005597029615. [PMID: 10384374]
  • S Toh, M Wada, T Uchiumi, A Inokuchi, Y Makino, Y Horie, Y Adachi, S Sakisaka, M Kuwano. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. American journal of human genetics. 1999 Mar; 64(3):739-46. doi: 10.1086/302292. [PMID: 10053008]
  • K Jacob, E Egeler, U Gross, M O Doss. Investigations on the formation of urinary coproporphyrin isomers I-IV in 5-aminolevulinic acid dehydratase deficiency porphyria, acute lead intoxication and after oral 5-aminolevulinic acid loading. Clinical biochemistry. 1999 Mar; 32(2):119-23. doi: 10.1016/s0009-9120(98)00104-0. [PMID: 10211628]
  • T Shimizu, T Tawa, T Maruyama, S Oguchi, Y Yamashiro, K Yabuta. A case of infantile Dubin-Johnson syndrome with high CT attenuation in the liver. Pediatric radiology. 1997 Apr; 27(4):345-7. doi: 10.1007/s002470050147. [PMID: 9094246]
  • E I Minder, X Schneider-Yin. Age-dependent reference values of urinary porphyrins in children. European journal of clinical chemistry and clinical biochemistry : journal of the Forum of European Clinical Chemistry Societies. 1996 May; 34(5):439-43. doi: 10.1515/cclm.1996.34.5.439. [PMID: 8790980]
  • C Zang, S Yu, S Li. [Diagnosis of meconium aspiration syndrome by fluorometry technique]. Zhonghua fu chan ke za zhi. 1995 Nov; 30(11):681-3. doi: NULL. [PMID: 8745496]
  • N R Badcock, D A Szep, G D Zoanetti, B D Lewis. Fecal coproporphyrin isomers in sporadic and familial porphyria cutanea tarda. Clinical chemistry. 1995 Sep; 41(9):1315-7. doi: 10.1093/clinchem/41.9.1315. [PMID: 7656445]
  • Y Kudo. [Screening program with urinary porphyrins--application to clinical finding in latent porphyrias]. Nihon rinsho. Japanese journal of clinical medicine. 1995 Jun; 53(6):1503-6. doi: . [PMID: 7616669]
  • Y Horie, S Kitaoka, H Tajima, T Kawatani, H Kawasaki. [Secondary porphyrinuria]. Nihon rinsho. Japanese journal of clinical medicine. 1995 Jun; 53(6):1513-7. doi: NULL. [PMID: 7616671]
  • G G García-Vargas, L M Del Razo, M E Cebrián, A Albores, P Ostrosky-Wegman, R Montero, M E Gonsebatt, C K Lim, F De Matteis. Altered urinary porphyrin excretion in a human population chronically exposed to arsenic in Mexico. Human & experimental toxicology. 1994 Dec; 13(12):839-47. doi: 10.1177/096032719401301204. [PMID: 7718303]
  • P Telolahy, B Javelaud, J Cluet, J de Ceaurriz, C Boudene. Urinary excretion of porphyrins by smelter workers chronically exposed to arsenic dust. Toxicology letters. 1993 Jan; 66(1):89-95. doi: 10.1016/0378-4274(93)90083-a. [PMID: 8427025]
  • E I Minder, J P Vuilleumier, D J Vonderschmitt. Prototype application of a robot in the clinical laboratory enabling fully automated quantification of fecal porphyrins. Clinical chemistry. 1992 Apr; 38(4):516-21. doi: . [PMID: 1568316]
  • N Kanayama, T Yamazaki, H Naruse, K Sumimoto, K Horiuchi, T Terao. Determining zinc coproporphyrin in maternal plasma--a new method for diagnosing amniotic fluid embolism. Clinical chemistry. 1992 Apr; 38(4):526-9. doi: 10.1093/clinchem/38.4.526. [PMID: 1568317]
  • D B Papkovskiĭ, A P Savitskiĭ, N N Ugarova, I V Berezin, G V Ponomarev. [Fluorescent immunoanalysis. Synthesis, spectro-fluorescent and immunologic properties of conjugates of coproporphyrin I with antibodies]. Prikladnaia biokhimiia i mikrobiologiia. 1989 Jul; 25(4):548-57. doi: NULL. [PMID: 2682597]
  • M Frank, M O Doss. Relevance of urinary coproporphyrin isomers in hereditary hyperbilirubinemias. Clinical biochemistry. 1989 Jun; 22(3):221-2. doi: 10.1016/s0009-9120(89)80080-3. [PMID: 2736773]
  • H Kellner, W G Zoller, K Jacob, H S Füessl. [Renal and enteral elimination of coproporphyrin isomers in Rotor's syndrome. A family study]. Klinische Wochenschrift. 1988 Oct; 66(19):953-6. doi: 10.1007/bf01738109. [PMID: 3184766]
  • P Both, M Frank, H G Merkel, M Doss. [Rotor syndrome: relevance of the determination of coproporphyrin isomers in the urine in comparison with intrahepatic (alcohol-induced) cholestasis]. Zeitschrift fur Gastroenterologie. 1988 Aug; 26(8):416-20. doi: NULL. [PMID: 3218284]
  • V R Reddy, W R Christenson, W N Piper. Extraction and isolation by high performance liquid chromatography of uroporphyrin and coproporphyrin isomers from biological tissues. Journal of pharmacological methods. 1987 Mar; 17(1):51-7. doi: 10.1016/0160-5402(87)90036-2. [PMID: 3560985]
  • D R Bickers, M B Poh-Fitzpatrick. Günther's disease and the changing complexion of human porphyria. Photo-dermatology. 1986 Dec; 3(6):315-6. doi: NULL. [PMID: 3588350]
  • K Tomokuni, T Hasegawa. [Relationship between coproporphyrin I and III excreted in the urine of lead workers]. Sangyo igaku. Japanese journal of industrial health. 1986 May; 28(3):206-7. doi: 10.1539/joh1959.28.206. [PMID: 3773302]
  • G L Rapaccini, G C Topi, M Anti, L D'Alessandro Gandolfo, D Griso, A Amantea, I de Vitis, G Fedeli. Porphyrins in Rotor's syndrome: a study on an Italian family. Hepato-gastroenterology. 1986 Feb; 33(1):11-3. doi: NULL. [PMID: 3957223]
  • D Stiel, M Lunzer, V Poulos. Urinary coproporphyrin excretion in Rotor's syndrome: a family study. Australian and New Zealand journal of medicine. 1982 Dec; 12(6):594-7. doi: 10.1111/j.1445-5994.1982.tb02644.x. [PMID: 6962707]
  • Y Shimizu, H Naruto, S Ida, M Kohakura. Urinary coproporphyrin isomers in Rotor's syndrome: a study in eight families. Hepatology (Baltimore, Md.). 1981 Mar; 1(2):173-8. doi: 10.1002/hep.1840010214. [PMID: 7286897]
  • V HOLECEK, M PENICKOVA. [Urinary secretion of coproporphyrins in lead poisoning. II. Distribution of coproporphyrin isomers I and III in urine]. Pracovni lekarstvi. 1956 Dec; 8(6):415-9. doi: NULL. [PMID: 13408171]