Reaction Process: WikiPathways:WP175
Acetylcholine synthesis related metabolites
find 10 related metabolites which is associated with chemical reaction(pathway) Acetylcholine synthesis
Acetate ⟶ Acetyl-CoA
Acetyl-CoA
The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia). acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. The main function of coenzyme A is to carry acyl groups (such as the acetyl group) or thioesters. Acetyl-CoA is an important molecule itself. It is the precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. (wikipedia)
Pyruvic acid
Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB). Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963). Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.
Choline
Choline is a basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Choline is now considered to be an essential vitamin. While humans can synthesize small amounts (by converting phosphatidylethanolamine to phosphatidylcholine), it must be consumed in the diet to maintain health. Required levels are between 425 mg/day (female) and 550 mg/day (male). Milk, eggs, liver, and peanuts are especially rich in choline. Most choline is found in phospholipids, namely phosphatidylcholine or lecithin. Choline can be oxidized to form betaine, which is a methyl source for many reactions (i.e. conversion of homocysteine into methionine). Lack of sufficient amounts of choline in the diet can lead to a fatty liver condition and general liver damage. This arises from the lack of VLDL, which is necessary to transport fats away from the liver. Choline deficiency also leads to elevated serum levels of alanine amino transferase and is associated with increased incidence of liver cancer. Nutritional supplement. Occurs free and combined in many animal and vegetable foods with highest concentrations found in egg yolk, meat, fish, milk, cereaks and legumes Choline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=62-49-7 (retrieved 2024-06-29) (CAS RN: 62-49-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Acetylcholine
Acetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID:17284361, 17011181, 15556286). Acetylcholine has been found to be a microbial product, urinary acetylcholine is produced by Lactobacillus (PMID:24621061). S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents IPB_RECORD: 232; CONFIDENCE confident structure COVID info from COVID-19 Disease Map Corona-virus KEIO_ID A060 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Choline phosphate
Phosphorylcholine, also known as choline phosphate or N-trimethyl-2-aminoethylphosphonate, is a member of the class of compounds known as phosphocholines. Phosphocholines are compounds containing a [2-(trimethylazaniumyl)ethoxy]phosphonic acid or derivative. Phosphorylcholine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Phosphorylcholine can be found in a number of food items such as grapefruit, lime, black cabbage, and barley, which makes phosphorylcholine a potential biomarker for the consumption of these food products. Phosphorylcholine can be found primarily in most biofluids, including urine, blood, saliva, and cerebrospinal fluid (CSF), as well as throughout most human tissues. Phosphorylcholine exists in all eukaryotes, ranging from yeast to humans. In humans, phosphorylcholine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(13D5/9D5), phosphatidylcholine biosynthesis PC(22:5(4Z,7Z,10Z,13Z,16Z)/22:5(7Z,10Z,13Z,16Z,19Z)), phosphatidylcholine biosynthesis PC(14:0/20:1(11Z)), and phosphatidylcholine biosynthesis PC(11D5/9D5). Phosphorylcholine is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease. Moreover, phosphorylcholine is found to be associated with alzheimers disease and multi-infarct dementia. Phosphorylcholine (abbreviated ChoP) is the hydrophilic polar head group of some phospholipids, which is composed of a negatively charged phosphate bonded to a small, positively charged choline group. Phosphorylcholine is part of platelet-activating factor; the phospholipid phosphatidylcholine as well as sphingomyelin, the only phospholipid of the membrane that is not built with a glycerol backbone. Treatment of cell membranes, like those of RBCs, by certain enzymes, like some phospholipase A2 renders the phosphorylcholine moiety exposed to the external aqueous phase, and thus accessible for recognition by the immune system. Antibodies against phosphorylcholine are naturally occurring autoantibodies that are created by CD5+/B-1 B cells and are referred to as non-pathogenic autoantibodies . Phosphorylcholine, also known as choline phosphate or CHOP, belongs to the class of organic compounds known as phosphocholines. Phosphocholines are compounds containing a [2-(trimethylazaniumyl)ethoxy]phosphonic acid or derivative. The phosphate of choline, and the parent compound of the phosphorylcholine family. Phosphorylcholine exists in all living species, ranging from bacteria to humans. Within humans, phosphorylcholine participates in a number of enzymatic reactions. In particular, phosphorylcholine can be converted into choline through its interaction with the enzyme phosphoethanolamine/phosphocholine phosphatase. In addition, phosphorylcholine can be converted into CDP-choline; which is mediated by the enzyme choline-phosphate cytidylyltransferase a. In humans, phosphorylcholine is involved in phospholipid biosynthesis. Outside of the human body, phosphorylcholine has been detected, but not quantified in several different foods, such as barley, pak choy, black radish, saskatoon berries, and acorns. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P074
Acetic acid
Acetic acid is a two-carbon, straight-chain fatty acid. It is the smallest short-chain fatty acid (SCFA) and one of the simplest carboxylic acids. is an acidic, colourless liquid and is the main component in vinegar. Acetic acid has a sour taste and pungent smell. It is an important chemical reagent and industrial chemical that is used in the production of plastic soft drink bottles, photographic film; and polyvinyl acetate for wood glue, as well as many synthetic fibres and fabrics. In households diluted acetic acid is often used as a cleaning agent. In the food industry acetic acid is used as an acidity regulator. Acetic acid is found in all organisms, from bacteria to plants to humans. The acetyl group, derived from acetic acid, is fundamental to the biochemistry of virtually all forms of life. When bound to coenzyme A (to form acetylCoA) it is central to the metabolism of carbohydrates and fats. However, the concentration of free acetic acid in cells is kept at a low level to avoid disrupting the control of the pH of the cell contents. Acetic acid is produced and excreted in large amounts by certain acetic acid bacteria, notably the Acetobacter genus and Clostridium acetobutylicum. These bacteria are found universally in foodstuffs, water, and soil. Due to their widespread presence on fruit, acetic acid is produced naturally as fruits and many other sugar-rich foods spoil. Several species of anaerobic bacteria, including members of the genus Clostridium and Acetobacterium can convert sugars to acetic acid directly. However, Clostridium bacteria are less acid-tolerant than Acetobacter. Even the most acid-tolerant Clostridium strains can produce acetic acid in concentrations of only a few per cent, compared to Acetobacter strains that can produce acetic acid in concentrations up to 20\\%. Acetic acid is also a component of the vaginal lubrication of humans and other primates, where it appears to serve as a mild antibacterial agent. Acetic acid can be found in other biofluids such as urine at low concentrations. Urinary acetic acid is produced by bacteria such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus (PMID: 22292465). Acetic acid concentrations greater than 30 uM/mM creatinine in the urine can indicate a urinary tract infection, which typically suggests the presence of E. coli or Klebshiella pneumonia in the urinary tract. (PMID: 24909875) Acetic acid is also produced by other bacteria such as Akkermansia, Bacteroidetes, Bifidobacterium, Prevotella and Ruminococcus (PMID: 20444704; PMID: 22292465). G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents It is used for smoking meats and fish C254 - Anti-Infective Agent KEIO_ID A029
PC(16:0/16:0)
PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes. R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AA - Lung surfactants C78273 - Agent Affecting Respiratory System DPPC (129Y83) is a zwitterionic phosphoglyceride that can be used for the preparation of liposomal monolayers[1]. DPPC-liposome serves effectively as a delivery vehicle for inducing immune responses against GSL antigen in mice[2].
Glycerophosphocholine
Glycerophosphorylcholine (GPC) is a choline derivative and one of the two major forms of choline storage (along with phosphocholine) in the cytosol. Glycerophosphorylcholine is also one of the four major organic osmolytes in renal medullary cells, changing their intracellular osmolyte concentration in parallel with extracellular tonicity during cellular osmoadaptation. As an osmolyte, Glycerophosphorylcholine counteracts the effects of urea on enzymes and other macromolecules. Kidneys (especially medullar cells), which are exposed under normal physiological conditions to widely fluctuating extracellular solute concentrations, respond to hypertonic stress by accumulating the organic osmolytes glycerophosphorylcholine (GPC), betaine, myo-inositol, sorbitol and free amino acids. Increased intracellular contents of these osmolytes are achieved by a combination of increased uptake (myo-inositol and betaine) and synthesis (sorbitol, GPC), decreased degradation (GPC) and reduced osmolyte release. GPC is formed in the breakdown of phosphatidylcholine (PtC). This pathway is active in many body tissues, including mammary tissue. Choline alfoscerate, also known as glycerophosphocholine or choline glycerophosphate, is a member of the class of compounds known as glycerophosphocholines. Glycerophosphocholines are lipids containing a glycerol moiety carrying a phosphocholine at the 3-position. Choline alfoscerate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Choline alfoscerate can be found in a number of food items such as radish, strawberry guava, yellow pond-lily, and pepper (c. baccatum), which makes choline alfoscerate a potential biomarker for the consumption of these food products. L-Alpha glycerylphosphorylcholine (alpha-GPC, choline alfoscerate) is a natural choline compound found in the brain. It is also a parasympathomimetic acetylcholine precursor which may have potential for the treatment of Alzheimers disease and other dementias . N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D013501 - Surface-Active Agents > D054709 - Lecithins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS sn-Glycero-3-phosphocholine (Choline Alfoscerate) is a precursor in the biosynthesis of brain phospholipids and increases the bioavailability of choline in nervous tissue. sn-Glycero-3-phosphocholine (Choline Alfoscerate) has significant effects on cognitive function with a good safety profile and tolerability, and is effective in the treatment of Alzheimer's disease and dementia[1][2].
PE(P-18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z))
Phosphatidylethanolamines (cephalin, sometimes abbreviated PE) are a class of phospholipids found in biological membranes. They are synthesized by the addition of CDP-ethanolamine to diglycerides, releasing CMP. S-Adenosyl methionine can subsequently methylate the amine of phosphatidylethanolamines to yield phosphatidylcholines (Wikipedia). Cephalin is a phospholipid, which is a lipid derivative. It is not to be confused with the molecule of the same name that is an alkaloid constituent of Ipecac. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. A class of glycerophospholipids in which a phosphatidyl group is esterified to the hydroxyl group of ethanolamine. (ChEBI). Phosphatidylethanolamine is found in many foods, some of which are sunflower, lemon, common grape, and spinach.
Citicoline
Citicoline is an essential intermediate in the biosynthetic pathway of structural phospholipids in cell membranes, particularly phosphatidylcholine. Once absorbed, citicoline is widely distributed throughout the body, crosses the blood-brain barrier and reaches the central nervous system (CNS), where it is incorporated into the membrane and microsomal phospholipid fraction. Citicoline activates biosynthesis of structural phospholipids of neuronal membranes, increases brain metabolism, and acts upon the levels of different neurotransmitters. Thus, citicoline has been experimentally shown to increase norepinephrine and dopamine levels in the CNS. Owing to these pharmacological mechanisms, citicoline has a neuroprotective effect in hypoxic and ischemic conditions, decreasing the volume of ischemic lesion, and also improves learning and memory performance in animal models of brain aging. In addition, citicoline has been shown to restore the activity of mitochondrial ATPase and membrane Na+/K+ATPase, to inhibit activation of certain phospholipases, and to accelerate reabsorption of cerebral edema in various experimental models. Citicoline has also been shown to be able to inhibit mechanisms of apoptosis associated to cerebral ischemia and in certain neurodegeneration models, and to potentiate neuroplasticity mechanisms. Citicoline is a safe drug, as shown by the toxicological tests conducted, that has no significant systemic cholinergic effects and is a well tolerated product. (PMID: 17171187) [HMDB]. Citicoline is found in many foods, some of which are chives, black walnut, kohlrabi, and abiyuch. Citicoline is an essential intermediate in the biosynthetic pathway of structural phospholipids in cell membranes, particularly phosphatidylcholine. Once absorbed, citicoline is widely distributed throughout the body, crosses the blood-brain barrier and reaches the central nervous system (CNS), where it is incorporated into the membrane and microsomal phospholipid fraction. Citicoline activates biosynthesis of structural phospholipids of neuronal membranes, increases brain metabolism, and acts upon the levels of different neurotransmitters. Thus, citicoline has been experimentally shown to increase norepinephrine and dopamine levels in the CNS. Owing to these pharmacological mechanisms, citicoline has a neuroprotective effect in hypoxic and ischemic conditions, decreasing the volume of ischemic lesion, and also improves learning and memory performance in animal models of brain aging. In addition, citicoline has been shown to restore the activity of mitochondrial ATPase and membrane Na+/K+ATPase, to inhibit activation of certain phospholipases, and to accelerate reabsorption of cerebral edema in various experimental models. Citicoline has also been shown to be able to inhibit mechanisms of apoptosis associated to cerebral ischemia and in certain neurodegeneration models, and to potentiate neuroplasticity mechanisms. Citicoline is a safe drug, as shown by the toxicological tests conducted, that has no significant systemic cholinergic effects and is a well tolerated product. (PMID:17171187). N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D018697 - Nootropic Agents