Reaction Process: Reactome:R-PFA-1474151

Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation related metabolites

find 9 related metabolites which is associated with chemical reaction(pathway) Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation

dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2

Tetrahydrobiopterin

(-)-(6R)-2-Amino-6-((1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4(3H)-pteridinone

C9H15N5O3 (241.1175)


Tetrahydrobiopterin (CAS: 17528-72-2), also known as BH4, is an essential cofactor in the synthesis of neurotransmitters and nitric oxide (PMID: 16946131). In fact, it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine into tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine into L-dopa by the enzyme tyrosine hydroxylase; and the conversion of tryptophan into 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase, all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline, and adrenaline. Tetrahydrobiopterin has been proposed to be involved in the promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinsons disease, Alzheimers disease, and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin (Wikipedia). A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C26170 - Protective Agent > C275 - Antioxidant Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.

   

zinc ion

Zinc cation

Zn+2 (63.9291)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AB - Enzymes D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C307 - Biological Agent > C29726 - Enzyme Replacement or Supplement Agent D004791 - Enzyme Inhibitors

   

Calcium

Calcium Cation

Ca+2 (39.9626)


   

Dyspropterin

1-(2-amino-4-oxo-5,6,7,8-tetrahydro-3H-pteridin-6-yl)propane-1,2-dione

C9H11N5O3 (237.0862)


Dyspropterin, an intermediate formed from dihydroneopterin triphosphate in the biosynthetic pathway of tetrahydrobiopterin. [HMDB] Dyspropterin, an intermediate formed from dihydroneopterin triphosphate in the biosynthetic pathway of tetrahydrobiopterin.

   

7,8-Dihydro-L-biopterin

2-amino-6-(1R,2S-dihydroxypropyl)-7,8-dihydro-4(1H)-pteridinone

C9H13N5O3 (239.1018)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

Flavin mononucleotide(3-)

Flavin mononucleotide(3-)

C17H18N4O9P-3 (453.0811)


D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

7,8-Dihydroneopterin 3-triphosphate(4-)

7,8-Dihydroneopterin 3-triphosphate(4-)

C9H12N5O13P3-4 (490.9644)


   

FAD trianion

FAD trianion

C27H30N9O15P2-3 (782.1337)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS