Reaction Process: BioCyc:TRYPANO_PWY0-1303

aminopropylcadaverine biosynthesis related metabolites

find 7 related metabolites which is associated with chemical reaction(pathway) aminopropylcadaverine biosynthesis

S-adenosyl-L-methioninamine + cadaverine ⟶ S-methyl-5'-thioadenosine + H+ + aminopropylcadaverine

5-methylthioadenosine (MTA)

(2R,3R,4S,5S)-2-(6-amino-9H-purin-9-yl)-5-[(methylsulfanyl)methyl]oxolane-3,4-diol

C11H15N5O3S (297.0896)


5-Methylthioadenosine, also known as MTA or thiomethyladenosine, belongs to the class of organic compounds known as 5-deoxy-5-thionucleosides. These are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-Methylthioadenosine is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. 5-Methylthioadenosine exists in all living species, ranging from bacteria to humans. 5-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. Within humans, 5-methylthioadenosine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine through the action of the enzyme spermidine synthase. In addition, 5-methylthioadenosine can be converted into 5-methylthioribose 1-phosphate and L-methionine; which is catalyzed by the enzyme S-methyl-5-thioadenosine phosphorylase. It is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. For instance, 5-Methylthioadenosine has been shown to influence the regulation of gene expression, proliferation, differentiation, and apoptosis (PMID:15313459). In humans, 5-methylthioadenosine is involved in the metabolic disorder called hypermethioninemia. Outside of the human body, 5-Methylthioadenosine has been detected, but not quantified in several different foods, such as soursops, allspices, summer grapes, alaska wild rhubarbs, and breadfruits. Elevated excretion appears in children with severe combined immunodeficiency syndrome (SCID) (PMID:3987052). Evidence suggests that 5-Methylthioadenosine can affect cellular processes in many ways. 5-Methylthioadenosine can be found in human urine. 5-deoxy-5-methylthioadenosine, also known as S-methyl-5-thioadenosine or mta, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-deoxy-5-methylthioadenosine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-deoxy-5-methylthioadenosine can be found in a number of food items such as allspice, sesame, roselle, and bayberry, which makes 5-deoxy-5-methylthioadenosine a potential biomarker for the consumption of these food products. 5-deoxy-5-methylthioadenosine can be found primarily in blood and urine, as well as in human fibroblasts, platelet and prostate tissues. 5-deoxy-5-methylthioadenosine exists in all living species, ranging from bacteria to humans. In humans, 5-deoxy-5-methylthioadenosine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. 5-deoxy-5-methylthioadenosine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, methionine adenosyltransferase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, and hypermethioninemia. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].

   

Cadaverine

Pentamethylenediamine dihydrochloride

C5H14N2 (102.1157)


Cadaverine is a foul-smelling diamine formed by bacterial decarboxylation of lysine that occurs during protein hydrolysis during putrefaction of animal tissue. However, this diamine is not purely associated with putrefaction. It is also produced in small quantities by mammals. In particular, it is partially responsible for the distinctive smell of urine and semen. Elevated levels of cadaverine have been found in the urine of some patients with defects in lysine metabolism. Cadaverine is toxic in large doses. In rats it had a low acute oral toxicity of more than 2000 mg/kg body weight .; Cadaverine is a foul-smelling molecule produced by protein hydrolysis during putrefaction of animal tissue. Cadaverine is a toxic diamine with the formula NH2(CH2)5NH2, which is similar to putrescine. Cadaverine is also known by the names 1,5-pentanediamine and pentamethylenediamine. Cadaverine is a foul-smelling diamine formed by bacterial decarboxylation of lysine that occurs during protein hydrolysis during putrefaction of animal tissue. However, this diamine is not purely associated with putrefaction. Cadaverine is a toxic diamine with the formula NH2(CH2)5NH2, which is similar to putrescines NH2(CH2)4NH2. Cadaverine is also known by the names 1,5-pentanediamine and pentamethylenediamine. It is also produced in small quantities by mammals. In particular, it is partially responsible for the distinctive smell of urine and semen. Elevated levels of cadaverine have been found in the urine of some patients with defects in lysine metabolism. Cadaverine is toxic in large doses. In rats it had a low acute oral toxicity of more than 2000 mg/kg body weight. Cadaverine can be found in Corynebacterium (PMID:27872963). Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent KEIO_ID C032

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.9898)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

S-Adenosylmethioninamine

{[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl}(3-aminopropyl)methylsulfanium

C14H23N6O3S+ (355.1552)


S-Adenosylmethioninamine is a biological sulfonium compound known as the major biological methyl donor. It is also a donor of methylene groups, amino groups, ribosyl groups and aminopropyl groups (PMID 15130560). S-Adenosylmethioninamine is a prodcut of enzyme adenosylmethionine decarboxylase [EC 4.1.1.50] in methionine metabolism pathway (KEGG). [HMDB] S-Adenosylmethioninamine is a biological sulfonium compound known as the major biological methyl donor. It is also a donor of methylene groups, amino groups, ribosyl groups and aminopropyl groups (PMID 15130560). S-Adenosylmethioninamine is a prodcut of enzyme adenosylmethionine decarboxylase [EC 4.1.1.50] in methionine metabolism pathway (KEGG).

   

Aminopropylcadaverine

N-(3-Aminopropyl)-1,5-pentanediamine

C8H21N3 (159.1735)


Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE. [HMDB] Aminopropylcadaverine,a polyamine, is the final product of aminopropylcadaverine biosynthesis pathway. Polyamines are important for cell growth and are believed to be involved in many processes including DNA, RNA, and protein synthesis, as well as membrane integrity and resistance to stress, to name a few. Cadaverine and aminopropylcadaverine are alternative polyamines that can at least partially substitute for purtrescine and spermidine, the primary polyamines found in E. coli. Lysine is decarboxylated to form cadaverine which is then converted to aminopropylcadaverine by the aminopropyltransferase, SpeE.

   

(2S)-2,6-diammoniohexanoate

(2S)-2,6-diammoniohexanoate

C6H15N2O2+ (147.1133)


   

Proton

Proton

H+ (1.0078)


Nuclear particle of charge number +1, spin 1/2 and rest mass of 1.007276470(12) u.