NCBI Taxonomy: 65559

Euphorbia milii (ncbi_taxid: 65559)

found 41 associated metabolites at species taxonomy rank level.

Ancestor: Euphorbia sect. Goniostema

Child Taxonomies: Euphorbia milii var. milii, Euphorbia milii var. roseana, Euphorbia milii var. splendens, Euphorbia milii var. longifolia, Euphorbia milii var. tenuispina

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.3705)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

Linoleate

cis-9, cis-12-octadecadienoic acid

C18H32O2 (280.2402)


COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Milimorin

3,5,7,2-Tetrahydroxy-4-methoxyflavone

C16H12O7 (316.0583)


   

Phorbic acid

Phorbic acid

C8H12O8 (236.0532)


   

Campesterol

Campesterol

C28H48O (400.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

Cognac oil

9,12-Octadecadienoic acid, (Z,Z)-, labeled with carbon-14

C18H32O2 (280.2402)


An octadecadienoic acid in which the two double bonds are at positions 9 and 12 and have Z (cis) stereochemistry. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

linoleic

9,12-Octadecadienoic acid, (9E,12E)-

C18H32O2 (280.2402)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-4-(acetyloxy)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-4-(acetyloxy)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

C38H42N2O9 (670.289)


   

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-3-hydroxy-2-[(1-hydroxy-2-methylbut-2-en-1-ylidene)amino]benzenecarboximidic acid

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-3-hydroxy-2-[(1-hydroxy-2-methylbut-2-en-1-ylidene)amino]benzenecarboximidic acid

C41H46N2O10 (726.3152)


   

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

C45H49N3O10 (791.3418)


   

n-[2-({[6-(acetyloxy)-5-hydroxy-7-(hydroxymethyl)-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

n-[2-({[6-(acetyloxy)-5-hydroxy-7-(hydroxymethyl)-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

C45H49N3O10 (791.3418)


   

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

C45H49N3O10 (791.3418)


   

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-3-hydroxy-2-({hydroxy[2-(methylamino)phenyl]methylidene}amino)benzenecarboximidic acid

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-3-hydroxy-2-({hydroxy[2-(methylamino)phenyl]methylidene}amino)benzenecarboximidic acid

C44H47N3O10 (777.3261)


   

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-2-aminobenzenecarboximidic acid

n-{2-[({7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl}oxy)carbonyl]phenyl}-2-aminobenzenecarboximidic acid

C36H40N2O8 (628.2785)


   

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

C36H40N2O8 (628.2785)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.3705)


   

n-[2-({[4-(acetyloxy)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

n-[2-({[4-(acetyloxy)-7-[(acetyloxy)methyl]-5-hydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

C38H42N2O9 (670.289)


   

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-6-(acetyloxy)-5-hydroxy-7-(hydroxymethyl)-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-6-(acetyloxy)-5-hydroxy-7-(hydroxymethyl)-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

C45H49N3O10 (791.3418)


   

12-hydroxy-14-methoxy-3-methyl-3,4,5,6,7,8,9,10-octahydro-2-benzoxacyclododecin-1-one

12-hydroxy-14-methoxy-3-methyl-3,4,5,6,7,8,9,10-octahydro-2-benzoxacyclododecin-1-one

C17H24O4 (292.1675)


   

n-[2-({[(4s,5s,6r,9r,10r,12r,14r)-7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

n-[2-({[(4s,5s,6r,9r,10r,12r,14r)-7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

C36H40N2O8 (628.2785)


   

n-{2-[({7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl}oxy)carbonyl]phenyl}-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

n-{2-[({7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl}oxy)carbonyl]phenyl}-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

C45H49N3O10 (791.3418)


   

1,3-dihydroxypentane-1,3,5-tricarboxylic acid

1,3-dihydroxypentane-1,3,5-tricarboxylic acid

C8H12O8 (236.0532)


   

n-[3-({[(4s,5s,6r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

n-[3-({[(4s,5s,6r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

C45H49N3O10 (791.3418)


   

n-{2-[({7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl}oxy)carbonyl]phenyl}-2-aminobenzenecarboximidic acid

n-{2-[({7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl}oxy)carbonyl]phenyl}-2-aminobenzenecarboximidic acid

C36H40N2O8 (628.2785)


   

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-3-hydroxy-2-({hydroxy[2-(methylamino)phenyl]methylidene}amino)benzenecarboximidic acid

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-3-hydroxy-2-({hydroxy[2-(methylamino)phenyl]methylidene}amino)benzenecarboximidic acid

C44H47N3O10 (777.3261)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-2-aminobenzenecarboximidic acid

C36H40N2O8 (628.2785)


   

n-[2-({[(1s,2s,6s,7r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,7-trihydroxy-4,8,12,12,15-pentamethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl]oxy}carbonyl)phenyl]-2-(methylamino)benzenecarboximidic acid

n-[2-({[(1s,2s,6s,7r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,7-trihydroxy-4,8,12,12,15-pentamethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl]oxy}carbonyl)phenyl]-2-(methylamino)benzenecarboximidic acid

C37H42N2O9 (658.289)


   

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

n-[2-({[(1s,4s,5r,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-4,5-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-6-yl]oxy}carbonyl)phenyl]-2-({[2-(dimethylamino)phenyl](hydroxy)methylidene}amino)-3-hydroxybenzenecarboximidic acid

C45H49N3O10 (791.3418)


   

n-[2-({[(1s,2s,6s,7r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,7-trihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl]oxy}carbonyl)phenyl]-2-hydroxybenzenecarboximidic acid

n-[2-({[(1s,2s,6s,7r,10s,11r,13s,14r,15r)-13-(acetyloxy)-1,6,7-trihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl]oxy}carbonyl)phenyl]-2-hydroxybenzenecarboximidic acid

C36H39NO11 (661.2523)


   

lasiodiplodin

lasiodiplodin

C17H24O4 (292.1675)


   

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-3-hydroxy-2-{[(2e)-1-hydroxy-2-methylbut-2-en-1-ylidene]amino}benzenecarboximidic acid

n-[2-({[(1s,4s,5s,6r,9s,10r,12r,14r)-7-[(acetyloxy)methyl]-5,6-dihydroxy-3,11,11,14-tetramethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-4-yl]oxy}carbonyl)phenyl]-3-hydroxy-2-{[(2e)-1-hydroxy-2-methylbut-2-en-1-ylidene]amino}benzenecarboximidic acid

C41H46N2O10 (726.3152)