NCBI Taxonomy: 2067404

Vernonia leopoldi (ncbi_taxid: 2067404)

found 65 associated metabolites at species taxonomy rank level.

Ancestor: Vernonia

Child Taxonomies: none taxonomy data.

(-)-dehydrocostus lactone

Azuleno(4,5-b)furan-2(3H)-one, decahydro-3,6,9-tris(methylene)-, (3aS-(3a.alpha.,6a.alpha.,9a.alpha.,9b.beta.))-

C15H18O2 (230.1306728)


Dehydrocostus lactone is an organic heterotricyclic compound and guaianolide sesquiterpene lactone that is acrylic acid which is substituted at position 2 by a 4-hydroxy-3,8-bis(methylene)decahydoazulen-5-yl group and in which the hydroxy group and the carboxy group have undergone formal condensation to afford the corresponding gamma-lactone. It has a role as a metabolite, a trypanocidal drug, an antineoplastic agent, a cyclooxygenase 2 inhibitor, an antimycobacterial drug and an apoptosis inducer. It is a sesquiterpene lactone, a guaiane sesquiterpenoid, an organic heterotricyclic compound and a gamma-lactone. Dehydrocostus lactone is a natural product found in Marshallia obovata, Cirsium carolinianum, and other organisms with data available. See also: Arctium lappa Root (part of). An organic heterotricyclic compound and guaianolide sesquiterpene lactone that is acrylic acid which is substituted at position 2 by a 4-hydroxy-3,8-bis(methylene)decahydoazulen-5-yl group and in which the hydroxy group and the carboxy group have undergone formal condensation to afford the corresponding gamma-lactone. CONFIDENCE standard compound; ML_ID 36 Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3]. Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Costunolide

Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.14632200000003)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. Constituent of costus root (Saussurea lappa). Costunolide is found in tarragon, sweet bay, and herbs and spices. Costunolide is found in herbs and spices. Costunolide is a constituent of costus root (Saussurea lappa) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents INTERNAL_ID 2266; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2266 D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Dehydrocostus lactone

3,6,9-trimethylidene-dodecahydroazuleno[4,5-b]furan-2-one

C15H18O2 (230.1306728)


Dehydrocostus lactone, also known as dehydro-alpha-curcumene, belongs to guaianolides and derivatives class of compounds. Those are diterpene lactones with a structure characterized by the presence of a gamma-lactone fused to a guaiane, forming 3,6,9-trimethyl-azuleno[4,5-b]furan-2-one or a derivative. Dehydrocostus lactone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Dehydrocostus lactone can be found in burdock and sweet bay, which makes dehydrocostus lactone a potential biomarker for the consumption of these food products.

   

Zaluzanin D

[(3aS,6aS,8S,9aR,9bS)-3,6,9-trimethylidene-2-oxo-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[4,5-b]furan-8-yl] acetate

C17H20O4 (288.13615200000004)


Zaluzanin d belongs to guaianolides and derivatives class of compounds. Those are diterpene lactones with a structure characterized by the presence of a gamma-lactone fused to a guaiane, forming 3,6,9-trimethyl-azuleno[4,5-b]furan-2-one or a derivative. Zaluzanin d is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Zaluzanin d can be found in sweet bay, which makes zaluzanin d a potential biomarker for the consumption of this food product.

   

5-Methylcoumarin

5-Methylcoumarin

C10H8O2 (160.0524268)


   

dehydrocostus lactone

NCGC00385838-01_C15H18O2_Azuleno[4,5-b]furan-2(3H)-one, decahydro-3,6,9-tris(methylene)-, (3aS,6aR,9aR,9bS)-

C15H18O2 (230.1306728)


Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3]. Dehydrocostus Lactone is a major sesquiterpene lactone isolated from the roots of Saussurea costus. IC50 value: Target: In vitro: Dehydrocostus Lactone promoted apoptosis with increased activation of caspases 8, 9, 7, 3, enhanced PARP cleavage, decreased Bcl-xL expression and increased levels of Bax, Bak, Bok, Bik, Bmf, and t-Bid. We have demonstrated that Dehydrocostus Lactone inhibits cell growth and induce apoptosis in DU145 cells [1]. Dehydrocostus Lactone inhibits NF-kappaB activation by preventing TNF-alpha-induced degradation and phosphorylation of its inhibitory protein I-kappaB alpha in human leukemia HL-60 cells and that dehydrocostus lactone renders HL-60 cells susceptible to TNF-alpha-induced apoptosis by enhancing caspase-8 and caspase-3 activities [2]. Dehydrocostus Lactone inhibited the production of NO in lipopolysaccharide (LPS)-activated RAW 264.7 cells by suppressing inducible nitric oxide synthase enzyme expression. In vivo: Dehydrocostus Lactone decreased the TNF-alpha level in LPS-activated systems in vivo [3].

   

Zaluzanin D

Zaluzanin D

C17H20O4 (288.13615200000004)


A sesquiterpene lactone that is decahydroazuleno[4,5-b]furan-2(3H)-one substituted by methylidene groups at positions 3, 6 and 9 and an acetlyoxy group at position 8. Isolated from Zaluzania triloba and Laurus nobilis, it exhibits trypanocidal activity.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Costunolide

NCGC00381718-02_C15H20O2_Cyclodeca[b]furan-2(3H)-one, 3a,4,5,8,9,11a-hexahydro-6,10-dimethyl-3-methylene-, (3aS,6E,10E,11aR)-

C15H20O2 (232.14632200000003)


Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics A germacranolide with anthelminthic, antiparasitic and antiviral activities. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

5-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-one

5-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-one

C16H18O8 (338.1001628)


   

3,6,9-trimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-8-yl acetate

3,6,9-trimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-8-yl acetate

C17H20O4 (288.13615200000004)


   

2-methyl-7,12-dimethylidene-3,9-dioxatetracyclo[9.3.0.0²,⁴.0⁶,¹⁰]tetradecan-8-one

2-methyl-7,12-dimethylidene-3,9-dioxatetracyclo[9.3.0.0²,⁴.0⁶,¹⁰]tetradecan-8-one

C15H18O3 (246.1255878)


   

8-tert-butyl-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

8-tert-butyl-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

C19H26O2 (286.1932696)


   

(1r,2s,4r,6s,10s,11r)-2-methyl-7,12-dimethylidene-3,9-dioxatetracyclo[9.3.0.0²,⁴.0⁶,¹⁰]tetradecan-8-one

(1r,2s,4r,6s,10s,11r)-2-methyl-7,12-dimethylidene-3,9-dioxatetracyclo[9.3.0.0²,⁴.0⁶,¹⁰]tetradecan-8-one

C15H18O3 (246.1255878)


   

5-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-one

5-methyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-one

C16H18O8 (338.1001628)


   

(3as,6ar,8r,9ar,9bs)-8-tert-butyl-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

(3as,6ar,8r,9ar,9bs)-8-tert-butyl-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

C19H26O2 (286.1932696)