Gene Association: ACADS

UniProt Search: ACADS (PROTEIN_CODING)
Function Description: acyl-CoA dehydrogenase short chain

found 31 associated metabolites with current gene based on the text mining result from the pubmed database.

dADP

[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O9P2 (411.0345)


Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945) [HMDB]. dADP is found in many foods, some of which are medlar, oil palm, greenthread tea, and green vegetables. Deoxyadenosine diphosphate has been identified in the mononuclear cells of a patient affected with in inherited adenosine deaminase deficiency (OMIM 102700) (PMID 6980023), and in in mononuclear cells of hemodialyzed patients. (PMID 11461945). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Crotonoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-[2-({2-[(2E)-but-2-enoylsulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-2-hydroxy-3,3-dimethylbutanimidic acid

C25H40N7O17P3S (835.1414)


Crotonoyl-CoA is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of a group of enzymes acyl-Coenzyme A oxidases 1, 2, 3 (E.C.: 1.3.3.6) corresponding to palmitoyl, branched chain, and pristanoyl, respectively, in the peroxisomal fatty acid beta-oxidation, producing hydrogen peroxide. Abnormality of this group of enzymes is linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. It is also a substrate of a group of enzymes called acyl-Coenzyme A dehydrogenase (E.C.:1.3.99-, including 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched chain amino acids in the mitochondria (Rozen et al., 1994). Acyl-Coenzyme A dehydrogenase (1.3.99.3) has shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, medium chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl coenzyme A hydratase (E.C.4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism, benzoate degradation via CoA ligation; in contrast it is the product of this enzyme in the butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-Hydroxybutyryl-CoA dehydratase (E.C.:4.2.1.55), glutaconyl-CoA decarboxylase (E.C.: 4.1.1.70), vinylacetyl-CoA Δ-isomerase (E.C.: 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (E.C.: 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl CoA is produced by glutaryl-Coenzyme A dehydrogenase (E.C.:1.3.99.7) lysine and tryptophan metabolic pathway. This enzyme is linked to type-1glutaric aciduria, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases. [HMDB] Crotonoyl-CoA (CAS: 992-67-6) is an important component in several metabolic pathways, notably fatty acid and amino acid metabolism. It is the substrate of acyl-coenzyme A oxidases 1, 2, and 3 (EC 1.3.3.6) corresponding to palmitoyl, branched-chain, and pristanoyl, respectively. In peroxisomal fatty acid beta-oxidation, these enzymes produce hydrogen peroxide. Abnormalities in this group of enzymes are linked to coma, dehydration, diabetes, fatty liver, hyperinsulinemia, hyperlipidemia, and leukodystrophy. Crotonoyl-CoA is also a substrate of a group of enzymes called acyl-coenzyme A dehydrogenases (EC 1.3.99-, 1.3.99.2, 1.3.99.3) in the metabolism of fatty acids or branched-chain amino acids in the mitochondria (PMID: 7698750). Acyl-coenzyme A dehydrogenase has been shown to contribute to kidney-associated diseases, such as adrenogential syndrome, kidney failure, kidney tubular necrosis, homocystinuria, as well as other diseases including cretinism, encephalopathy, hypoglycemia, and medium-chain acyl-CoA dehydrogenase deficiency. The gene (ACADS) also plays a role in theta oscillation during sleep. In addition, crotonoyl-CoA is the substrate of enoyl-coenzyme A hydratase (EC 4.2.1.17) in the mitochondria during lysine degradation and tryptophan metabolism as well as benzoate degradation via CoA ligation. Crotonoyl-CoA is the product of this enzyme in butanoate metabolism. Moreover, it is produced from multiple enzymes in the butanoate metabolism pathway, including 3-hydroxybutyryl-CoA dehydratase (EC 4.2.1.55), glutaconyl-CoA decarboxylase (EC 4.1.1.70), vinylacetyl-CoA delta-isomerase (EC 5.3.3.3), and trans-2-enoyl-CoA reductase (NAD+) (EC 1.3.1.44). In lysine degradation and tryptophan metabolism, crotonoyl-CoA is produced by glutaryl-coenzyme A dehydrogenase (EC 1.3.99.7). This enzyme is linked to glutaric aciduria type I, metabolic diseases, movement disorders, myelinopathy, and nervous system diseases.

   

butanoyl-CoA

(2R)-4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(butanoylsulfanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C25H42N7O17P3S (837.1571)


Butyryl-coa, also known as 4:0-coa or butanoyl-coa, is a member of the class of compounds known as acyl coas. Acyl coas are organic compounds containing a coenzyme A substructure linked to an acyl chain. Thus, butyryl-coa is considered to be a fatty ester lipid molecule. Butyryl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Butyryl-coa can be synthesized from coenzyme A and butyric acid. Butyryl-coa is also a parent compound for other transformation products, including but not limited to, (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA, acetoacetyl-CoA, and 2-methylacetoacetyl-CoA. Butyryl-coa can be found in a number of food items such as wild carrot, persian lime, redcurrant, and arrowroot, which makes butyryl-coa a potential biomarker for the consumption of these food products. Butyryl-coa may be a unique E.coli metabolite.

   

Propionylcarnitine

O-propanoyl-carnitine

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents An O-acylcarnitine compound having propanoyl as the acyl substituent. D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

Butyrylcarnitine

(3R)-3-(Butyryloxy)-4-(trimethylammonio)butanoic acid

C11H21NO4 (231.1471)


Butyrylcarnitine, also known as (3R)-3-(butyryloxy)-4-(trimethylammonio)butanoate or L-carnitine butyryl ester, is classified as a member of the acylcarnitines. Acylcarnitines are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. Butyrylcarnitine is considered to be practically insoluble (in water) and acidic. Butyrylcarnitine is elevated in patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency, in infants with acute acidosis and generalized muscle weakness, and in middle-aged patients with chronic myopathy localized in muscle (OMIM: 201470). Butyrylcarnitine is elevated in patients with acyl-coa dehydrogenase, short-chain (SCAD) deficiencyin; in infants with acute acidosis and generalized muscle weakness; and in middle-aged patients with chronic myopathy localized in muscle. (OMIM 201470) [HMDB] Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.

   

Isobutyryl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). [HMDB] Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Pentanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H44N7O17P3S (851.1727)


Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.

   

Dec-4-enedioyl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(2-methylbutanoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid

C26H44N7O17P3S (851.1727)


Dec-4-enedioyl-coa, also known as 2-methylbutanoyl-CoA is an acyl-CoA or acyl-coenzyme A. More specifically, it is a dec-4-enedioic acid thioester of coenzyme A. Dec-4-enedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Dec-4-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Dec-4-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Dec-4-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Dec-4-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Dec-4-enedioyl-CoA into Dec-4-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Dec-4-enedioylcarnitine is converted back to Dec-4-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Dec-4-enedioyl-CoA occurs in four steps. First, since Dec-4-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Dec-4-enedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ket... a-Methylbutyryl-CoA is a a product of isoleucine catabolism. It is converted to Tiglyl-CoA by short/branched-chain acyl-CoA dehydrogenase. 2-Methylbutyryl-CoA dehydrogenase deficiency, also called 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency or MBHD, is an inherited disorder in which the body is unable to process the amino acid isoleucine properly. It is caused by a mutation in the HADH2 gene. Untreated MBHD can lead to progressive loss of motor skills, to mental retardation and to epilepsy. 2-Methylbutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). [HMDB]

   

Nitroethane

Ethylnitronate

C2H5NO2 (75.032)


   

Cyclohex-1,5-diene-1-carboxyl-CoA

4-({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-N-(2-{[2-(cyclohexa-1,5-diene-1-carbonylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)-2-hydroxy-3,3-dimethylbutanimidic acid

C28H42N7O17P3S (873.1571)


Cyclohex-1,5-diene-1-carboxyl-CoA is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. In this pathway, cyclohex-1,5-diene-1-carboxyl-CoA is generated from benzoyl-CoA via the enzyme benzoyl-CoA reductase subunit (EC 1.3.99.15) and is then converted to Cyclohex-1,4-diene-1-carboxyl-CoA. [HMDB] Cyclohex-1,5-diene-1-carboxyl-CoA is an intermediate in Benzoate degradation via CoA ligation. Biodegradation of aromatic compounds is a common process in anoxic environments. The many natural and synthetic aromatic compounds found in the environment are usually degraded by anaerobic microorganisms into only few central intermediates, prior to ring cleavage. Benzoyl-CoA is the most important of these intermediates since a large number of compounds, including chloro-, nitro-, and aminobenzoates, aromatic hydrocarbons, and phenolic compounds, are initially converted to benzoyl-CoA prior to ring reduction and cleavage. In this pathway, cyclohex-1,5-diene-1-carboxyl-CoA is generated from benzoyl-CoA via the enzyme benzoyl-CoA reductase subunit (EC 1.3.99.15) and is then converted to Cyclohex-1,4-diene-1-carboxyl-CoA.

   

cyclohex-1-ene-1-carbonyl-CoA

cyclohex-1-ene-1-carbonyl-CoA

C28H44N7O17P3S (875.1727)


An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of cyclohex-1-ene-1-carboxylic acid.

   

Tridecanol

1-Tridecanol, trialuminum salt

C13H28O (200.214)


1-tridecanol is a long chain fatty alcohol with a C-13 carbon back bone. It was found to be the most effective for controlling cariogenic bacterium. [HMDB] 1-tridecanol is a long chain fatty alcohol with a C-13 carbon back bone. It was found to be the most effective for controlling cariogenic bacterium.

   

Butyryl-CoA

{[5-(6-amino-9H-purin-9-yl)-2-[({[({3-[(2-{[2-(butanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]-3-hydroxy-2,2-dimethylpropoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


Butyryl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Acyl-coenzyme A oxidase 3 (peroxisomal), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal), Acyl-coenzyme A oxidase 1 (peroxisomal), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial), Acyl-CoA dehydrogenase (long-chain specific, mitochondrial), Acyl-coenzyme A oxidase 2 (peroxisomal), Acetyl-CoA acetyltransferase (mitochondrial), Acetyl-CoA acetyltransferase (cytosolic), Acyl-CoA dehydrogenase (short-chain specific, mitochondrial) and Trifunctional enzyme beta subunit (mitochondrial).

   
   

CoA 5:0

3-methylbutanoyl-coenzyme A;3-methylbutyryl-CoA;3-methylbutyryl-coenzyme A;beta-methylbutanoyl-CoA;beta-methylbutanoyl-coenzyme A;beta-methylbutyryl-CoA;beta-methylbutyryl-coenzyme A;isovaleryl-coenzyme A

C26H44N7O17P3S (851.1727)


   

CoA 4:0

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


   

CoA 4:1

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-2,2-dimethyl-4-{[3-({2-[(2-methylprop-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-4-oxobutyl] dihydrogen diphosphate}

C25H40N7O17P3S (835.1414)


   

CoA 7:2

3-phosphoadenosine 5-{3-[(3R)-4-{[3-({2-[(cyclohex-1-ene-1-carbonyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C28H44N7O17P3S (875.1727)


   

CoA 7:3

Cyclohex-2,5-diene-1-carbonyl-CoA;Cyclohex-2,5-diene-1-formyl-CoA;Cyclohex-2,5-dienecarbonyl-CoA;cyclohex-2,5-dienecarboxyl-coenzyme A;cyclohexa-2,5-diene-1-carbonyl-coenzyme A

C28H42N7O17P3S (873.1571)


   

CAR 3:0

(3S)-3-(propionyloxy)-4-(trimethylammonio)butanoate

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

tridecanol

4-01-00-01860 (Beilstein Handbook Reference)

C13H28O (200.214)


   

Pentanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy({3-hydroxy-2,2-dimethyl-3-[(2-{[2-(pentanoylsulfanyl)ethyl]carbamoyl}ethyl)carbamoyl]propoxy})phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C26H44N7O17P3S (851.1727)


Pentanoyl CoA is an acyl-CoA with the C-5 Acyl chain. Acyl-CoA (or formyl-CoA) is a coenzyme involved in the metabolism of fatty acids. It is a temporary compound formed when coenzyme A (CoA) attaches to the end of a long-chain fatty acid, inside living cells. The CoA is then removed from the chain, carrying two carbons from the chain with it, forming acetyl-CoA. This is then used in the citric acid cycle to start a chain of reactions, eventually forming many adenosine triphosphates. To be oxidatively degraded, a fatty acid must first be activated in a two-step reaction catalyzed by acyl-CoA synthetase. First, the fatty acid displaces the diphosphate group of ATP, then coenzyme A (HSCoA) displaces the AMP group to form an Acyl-CoA. The acyladenylate product of the first step has a large free energy of hydrolysis and conserves the free energy of the cleaved phosphoanhydride bond in ATP. The second step, transfer of the acyl group to CoA (the same molecule that carries acetyl groups as acetyl-CoA), conserves free energy in the formation of a thioester bond. Consequently, the overall reaction Fatty acid + CoA + ATP <=> Acyl-CoA + AMP + PPi has a free energy change near zero. Subsequent hydrolysis of the product PPi (by the enzyme inorganic pyrophosphatase) is highly exergonic, and this reaction makes the formation of acyl-CoA spontaneous and irreversible. Fatty acids are activated in the cytosol, but oxidation occurs in the mitochondria. Because there is no transport protein for CoA adducts, acyl groups must enter the mitochondria via a shuttle system involving the small molecule carnitine. Pentanoyl coA is a acyl-CoA with the C-5 Acyl chain.

   

NITROETHANE

NITROETHANE

C2H5NO2 (75.032)


   

Isobutyryl-CoA

Isobutyryl-CoA

C25H42N7O17P3S (837.1571)


A short-chain, methyl-branched fatty acyl-CoA that is the S-isobutyryl derivative of coenzyme A.

   

2-Deoxyadenosine-5-diphosphate

2-Deoxyadenosine-5-diphosphate

C10H15N5O9P2 (411.0345)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Butyryl-CoA

Butyryl-CoA

C25H42N7O17P3S (837.1571)


A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of butyric acid.

   

Crotonoyl-CoA

Crotonoyl-CoA

C25H40N7O17P3S (835.1414)


The (E)-isomer of but-2-enoyl-CoA.

   

2-methylbutanoyl-CoA

2-methylbutanoyl-CoA

C26H44N7O17P3S (851.1727)


A short-chain, methyl-branched fatty acyl-CoA having 2-methylbutanoyl as the S-acyl group.

   

cyclohexa-1,5-diene-1-carbonyl-CoA

cyclohexa-1,5-diene-1-carbonyl-CoA

C28H42N7O17P3S (873.1571)


   

pentanoyl-CoA

pentanoyl-CoA

C26H44N7O17P3S (851.1727)


A short-chain fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of pentanoic acid.

   

Butyrylcarnitine

Butyrylcarnitine

C11H21NO4 (231.1471)


Butyrylcarnitine is a metabolite in plasma, acts as a biomarker to improve the diagnosis and prognosis of heart failure, and is indicative of anomalous lipid and energy metabolism.