Exact Mass: 465.2839
Exact Mass Matches: 465.2839
Found 422 metabolites which its exact mass value is equals to given mass value 465.2839
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Glycocholic acid
Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
3a,7b,12a-Trihydroxyoxocholanyl-Glycine
3a,7b,12a-Trihydroxyoxocholanyl-Glycine is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). 3a,7b,12a-Trihydroxyoxocholanyl-Glycine is a specific ketonic bile acid found in the urine of infants during the neonatal period. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. [HMDB] 3a,7b,12a-Trihydroxyoxocholanyl-Glycine is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). 3a,7b,12a-Trihydroxyoxocholanyl-Glycine is a specific ketonic bile acid found in the urine of infants during the neonatal period. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
LysoPC(14:1(9Z)/0:0)
LysoPC(14:1(9Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(14:1(9Z)), in particular, consists of one chain of myristoleic acid at the C-1 position. The myristoleic acid moiety is derived from milk fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins. [HMDB] LysoPC(14:1(9Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(14:1(9Z)), in particular, consists of one chain of myristoleic acid at the C-1 position. The myristoleic acid moiety is derived from milk fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.
LysoPE(P-18:0/0:0)
LysoPE(P-18:0/0:0) is a phospho-ether lipid. Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodelling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine, and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin and choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0, and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
Glycohyocholic acid
Glycohyocholic acid (GHCA) is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
N-Docosahexaenoyl Histidine
N-docosahexaenoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoyl amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl Histidine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Eicosapentaenoyl Tyrosine
N-eicosapentaenoyl tyrosine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Tyrosine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Tyrosine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Tyrosine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
[5-[2,4-Bis((3S)-3-methylmorpholin-4-yl)pyrido[2,3-d]pyrimidin-7-yl]-2-methoxyphenyl]methanol
Glycyl-histidyl-arginyl-proline
N-Choloylglycine
Cholylglycine
D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
(7S,13E,16S,17R,18S,19E)-22-oxa-(12)-cytochalasa-5,13,19-triene-1,21-dione-7,17-dihydroxy-16,18-dimethyl-10-phenyl|cytochalasin Z8
18-methoxyeladine|6beta,16beta-dihydroxy-7,8-methylenedioxy-1alpha,14alpha,18-trimethoxy-N-ethylaconitane
1alpha,6beta-dihydroxy-7,8-methylenedioxy-14alpha,16beta,18beta-trimethoxy-N-ethylaconitane|uraphine
(6R,16S,18R,21R)-18,21-dihydroxy-16,18-dimethyl-10-phenyl[11]cytochalasa-13(E),19(E)-diene-1,7,17-trione|zygosporin D
(7S,13E,16S,17R,18S,19E)-22-oxa-(12)-cytochalasa-6(12),13,19-triene-1,21-dione-7,17-dihydroxy-16,18-dimethyl-10-phenyl|cytochalasin Z7
Thr Ala Phe Lys
Ala Phe Thr Lys
Glycocholic acid hydrate
Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
glycocholate
Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
C25H39NO7_(7E)-6-Hydroperoxy-11,12-dihydroxy-3-isobutyl-13-methoxy-4,5,8-trimethyl-3,3a,6,6a,9,10,11,12,13,14-decahydro-1H-cycloundeca[d]isoindole-1,15(2H)-dione
Glycocholic acid
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RFDAIACWWDREDC-FRVQLJSFSA-N_STSL_0092_Glycocholic acid_8000fmol_180416_S2_LC02_MS02_93; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].
Glycohyocholic acid
A bile acid glycine conjugate having hyocholic acid as the bile acid component. CONFIDENCE standard compound; INTERNAL_ID 74
N-[(3alpha,5beta,7alpha,12alpha)-3,7,12-trihydroxy-24-oxocholan-24-yl]glycine
BA-133-150. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-133-120. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-133-90. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan.
sodium glycocholate
((4R)-4-((3R,5S,6R,7S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine
((R)-4-((3R,5S,7S,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine
Ala Phe Lys Thr
Ala Lys Phe Thr
Ala Lys Thr Phe
Ala Thr Phe Lys
Ala Thr Lys Phe
Phe Ala Lys Thr
Phe Ala Thr Lys
Phe Lys Ala Thr
Phe Lys Thr Ala
Phe Thr Ala Lys
Phe Thr Lys Ala
Gly His Pro Arg
Gly His Arg Pro
Gly Lys Val Tyr
Gly Lys Tyr Val
Gly Pro His Arg
Gly Pro Arg His
Gly Arg His Pro
Gly Arg Pro His
Gly Val Lys Tyr
Gly Val Tyr Lys
Gly Tyr Lys Val
Gly Tyr Val Lys
His Gly Pro Arg
His Gly Arg Pro
His Pro Gly Arg
His Pro Arg Gly
His Arg Gly Pro
His Arg Pro Gly
Lys Ala Phe Thr
Lys Ala Thr Phe
Lys Phe Ala Thr
Lys Phe Thr Ala
Lys Gly Val Tyr
Lys Gly Tyr Val
Lys Thr Ala Phe
Lys Thr Phe Ala
Lys Val Gly Tyr
Lys Val Tyr Gly
Lys Tyr Gly Val
Lys Tyr Val Gly
Pro Gly His Arg
Pro Gly Arg His
Pro His Gly Arg
Pro His Arg Gly
Pro Pro Pro Arg
Pro Pro Arg Pro
Pro Arg Gly His
Pro Arg His Gly
Pro Arg Pro Pro
Arg Gly His Pro
Arg Gly Pro His
Arg His Gly Pro
Arg His Pro Gly
Arg Pro Gly His
Arg Pro His Gly
Arg Pro Pro Pro
Thr Ala Lys Phe
Thr Phe Ala Lys
Thr Phe Lys Ala
Thr Lys Ala Phe
Thr Lys Phe Ala
Val Gly Lys Tyr
Val Gly Tyr Lys
Val Lys Gly Tyr
Val Lys Tyr Gly
Val Tyr Gly Lys
Val Tyr Lys Gly
Tyr Gly Lys Val
Tyr Gly Val Lys
Tyr Lys Gly Val
Tyr Lys Val Gly
Tyr Val Gly Lys
Tyr Val Lys Gly
PC(14:1/0:0)
PC(14:2l8,8/0:0)[U]
PC(P-15:0/0:0)
2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid,hydrate
AZD8055
C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2201 - mTOR Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor AZD-8055 is a potent, selective, and orally bioavailable ATP-competitive mTOR kinase inhibitor with an IC50 of 0.8 nM. AZD-8055 inhibits both mTORC1 and mTORC2[1]. AZD-8055 is a potent, selective, and orally bioavailable ATP-competitive mTOR kinase inhibitor with an IC50 of 0.8 nM. AZD-8055 inhibits both mTORC1 and mTORC2[1].
KU-0063794
D004791 - Enzyme Inhibitors KU-0063794 is a potent and specific mTOR inhibitor, inhibiting both the mTORC1 and mTORC2 complexes with IC50s of 10 nM. KU-0063794 is a potent and specific mTOR inhibitor, inhibiting both the mTORC1 and mTORC2 complexes with IC50s of 10 nM.
PHOSPHOENOLPYRUVIC ACID TRIS(CYCLOHEXYLAMMONIUM) SALT
Tricyclohexanaminium 2-(phosphonatooxy)acrylate
Phosphoenolpyruvic acid tricyclohexylammoniu?m salt is a glycolysis metabolite with a high-energy phosphate group, penetrates the cell membrane and exhibits cytoprotective and anti-oxidative activity[1].
n-2-nitrophenylsulfenyl-l-isoleucine dicyclohexylammonium salt
N-[(9R)-6-Methoxycinchonan-9-yl]-N-[(2S)-2-pyrrolidinylMethyl]-Thiourea
1-Azoniabicyclo(2.2.2)octane, 1-(2-(4-fluorophenyl)ethyl)-3-((2S)-1-oxo-2-phenyl-2-(1-piperidinyl)propoxy)-, (3R)-
1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-(3-hydroxypropylamino)-5,6-dimethyl-1H-benzo[d]imidazol-1-yl)ethanone
Phosphoric acid, mono(2-aminoethyl) mono[2-hydroxy-3-(1-octadecenyloxy)propyl] ester, (R)-
[5-[2,4-Bis((3S)-3-methylmorpholin-4-yl)pyrido[2,3-d]pyrimidin-7-yl]-2-methoxyphenyl]methanol
2-[[(4E,7E,10E,13E,16E,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-(1H-imidazol-5-yl)propanoic acid
2-[[(4R)-1-oxo-4-[(3R,7R,10S,12S,13R,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentyl]amino]acetic acid
1-(1-Adamantyl)-3-[8-[[1-(2-furanylmethyl)-5-tetrazolyl]methyl]-8-azabicyclo[3.2.1]octan-3-yl]urea
(24S)-3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestan-26-oate
3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestan-26-oate with S configuration at C-24; major microspecies at pH 7.3.
1-(10z-Heptadecenoyl)-sn-glycero-3-phosphoethanolamine
3alpha-hydroxyetiocholan-17-one 3-O-(beta-D-glucuronate)
3-oxo-5alpha-androstan-17beta-yl beta-D-glucopyranosiduronate
[5-[2-[(2R,6R)-2,6-dimethylmorpholin-4-yl]-4-morpholin-4-ylpyrido[2,3-d]pyrimidin-7-yl]-2-methoxyphenyl]methanol
(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-8-[2-(2-methoxyphenyl)ethynyl]-3-methyl-2-[[methyl(propyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-8-[2-(4-methoxyphenyl)ethynyl]-3-methyl-2-[[methyl(propyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
[(E)-[(1R,4aR,4bS,8aS,10aS)-4b,8,8,10a-tetramethyl-1-[2-(5-oxo-1,2-dihydropyrrol-4-yl)ethyl]-1,3,4,4a,5,6,7,8a,9,10-decahydrophenanthren-2-ylidene]methyl] hydrogen sulfate
2-cyclopropyl-N-[[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
2-cyclopropyl-N-[[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
2-cyclopropyl-N-[[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
2-cyclopropyl-N-[[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
2-cyclopropyl-N-[[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
(2S,3S,3aR,9bR)-1-(cyclopentylmethyl)-3-(hydroxymethyl)-7-(4-methoxyphenyl)-N,N-dimethyl-6-oxo-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
2-cyclopropyl-N-[[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
2-cyclopropyl-N-[[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
(2R,3R,3aS,9bS)-1-(cyclopentylmethyl)-3-(hydroxymethyl)-7-(4-methoxyphenyl)-N,N-dimethyl-6-oxo-3,3a,4,9b-tetrahydro-2H-pyrrolo[2,3-a]indolizine-2-carboxamide
(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-8-[2-(2-methoxyphenyl)ethynyl]-3-methyl-2-[[methyl(propyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-8-[2-(2-methoxyphenyl)ethynyl]-3-methyl-2-[[methyl(propyl)amino]methyl]-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
(2R,3R)-2-[[cyclopentylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
2-methoxy-N-[(4R,7R,8S)-8-methoxy-5-(2-methoxy-1-oxoethyl)-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7R,8R)-8-methoxy-5-(2-methoxy-1-oxoethyl)-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7S,8S)-8-methoxy-5-(2-methoxy-1-oxoethyl)-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-cyclopropyl-1-[(1R)-2-(2-cyclopropyl-1-oxoethyl)-1-(hydroxymethyl)-7-methoxy-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,4-piperidine]yl]ethanone
1-[(1R)-2-[(2-fluorophenyl)methyl]-1-(hydroxymethyl)-7-methoxy-9-methyl-1-spiro[1,3-dihydropyrido[3,4-b]indole-4,3-azetidine]yl]-1-butanone
1-[(1R)-2-[cyclopentyl(oxo)methyl]-1-(hydroxymethyl)-7-methoxy-9-methyl-1-spiro[1,3-dihydropyrido[3,4-b]indole-4,3-azetidine]yl]-2-cyclopropylethanone
2-cyclopropyl-N-[[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(2-methylphenyl)-6-oxo-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-2-yl]methyl]-N-methylacetamide
(2S,3S)-2-[[cyclopentylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one
2-methoxy-N-[(4S,7S,8S)-8-methoxy-5-(2-methoxy-1-oxoethyl)-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7R,8R)-8-methoxy-5-(2-methoxy-1-oxoethyl)-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7S,8R)-8-methoxy-5-(2-methoxy-1-oxoethyl)-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7S,8R)-8-methoxy-5-(2-methoxy-1-oxoethyl)-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
(1R,9S,10S,11S)-N-cyclobutyl-12-[2-(dimethylamino)acetyl]-10-(hydroxymethyl)-6-oxo-5-pyridin-3-yl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
(1S,9R,10R,11R)-N-cyclobutyl-12-[2-(dimethylamino)acetyl]-10-(hydroxymethyl)-6-oxo-5-pyridin-3-yl-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-diene-11-carboxamide
4-[4-[(8R,9R,10R)-10-(hydroxymethyl)-6-(1-oxo-2-phenylethyl)-1,6-diazabicyclo[6.2.0]decan-9-yl]phenyl]benzonitrile
3-[4-[(8R,9R,10R)-10-(hydroxymethyl)-6-(1-oxo-2-phenylethyl)-1,6-diazabicyclo[6.2.0]decan-9-yl]phenyl]benzonitrile
2-cyclopropyl-1-[(1S)-2-(2-cyclopropyl-1-oxoethyl)-1-(hydroxymethyl)-7-methoxy-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,4-piperidine]yl]ethanone
1-[(1S)-2-[cyclopentyl(oxo)methyl]-1-(hydroxymethyl)-7-methoxy-9-methyl-1-spiro[1,3-dihydropyrido[3,4-b]indole-4,3-azetidine]yl]-2-cyclopropylethanone
3alpha,7alpha,12alpha,24-Tetrahydroxy-5beta-cholestan-26-oate
The steroid acid anion formed by proton loss from the carboxy group of 3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestan-26-oic acid; major micro-species at pH 7.3.
2-[[(4R)-4-[(3R,5S,7R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid
2-azaniumylethyl (2R)-2-hydroxy-3-[(octadec-1-en-1-yl)oxy]propyl phosphate
17-oxo-5beta-androstan-3beta-yl beta-D-glucopyranosiduronate
[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-heptadec-10-enoate
N-(1-amino-4-methylsulfanyl-1-oxobutan-2-yl)-2-[[2-[(2-amino-3-phenylpropanoyl)amino]acetyl]amino]-4-methylpentanamide
2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid
2-aminoethyl [2-hydroxy-3-[(Z)-octadec-9-enoxy]propyl] hydrogen phosphate
[2-hydroxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate
[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-heptadec-9-enoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] acetate
3-Hydroxy-2-(2-hydroxydodecanoylamino)undecane-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] butanoate
3-Hydroxy-2-(2-hydroxytridecanoylamino)decane-1-sulfonic acid
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] propanoate
[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-tridec-9-enoate
[1-acetyloxy-3-[2-aminoethoxy(hydroxy)phosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate
2-[4-[(3R,5S,7R,8R,9S,12S,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid
[2-[[(E)-10,16-dichlorohexadec-4-enoyl]-methylamino]-3-methoxypropyl] acetate
2-[hydroxy-[(E)-3-hydroxy-2-(pentanoylamino)dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-acetamido-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-(propanoylamino)tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-(octanoylamino)non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-(heptanoylamino)-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-(hexanoylamino)-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(E)-3-hydroxy-2-(nonanoylamino)oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(E)-2-(butanoylamino)-3-hydroxytridec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
cholesterol sulfate(1-)
A steroid sulfate oxoanion obtained by deprotonation of the sulfo group of cholesterol sulfate; major species at pH 7.3.
1-(1Z-octadecenyl)-sn-glycero-3-phosphoethanolamine
1-(9Z-octadecenyl)-sn-glycero-3-phosphoethanolamine
1-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine
5alpha-dihydrotestosterone 17-O-(beta-D-glucuronide)(1-)
A steroid glucuronide anion that is the conjugate base of 5alpha-dihydrotestosterone 17-O-(beta-D-glucuronide) arising from deprotonation of the carboxylic acid function; major species at pH 7.3.
1-(octadec-1-enyl)-sn-glycero-3-phosphoethanolamine zwitterion
1-(alk-1-enyl)-sn-glycero-3-phosphoethanolamine zwitterion in which the alk-1-enyl group is specified as octadec-1-enyl.
lysophosphatidylcholine 14:1
A lysophosphatidylcholine in which the remaining acyl group contains 14 carbons and 1 double bond. If R1 is the acyl group and R2 is a hydrogen then the molecule is a 1-acyl-sn-glycero-3-phosphocholine. If R1 is a hydrogen and R2 is the acyl group then the molecule is a 2-acyl-sn-glycero-3-phosphocholine.
lysophosphatidylcholine 14:1(9Z)/0:0
A lysophosphatidylcholine 14:1 in which the remaining acyl group is (9Z)-tetradecenoyl.
1-(octadec-1-enyl)-sn-glycero-3-phosphoethanolamine
1-(alk-1-enyl)-sn-glycero-3-phosphoethanolamine in which the alk-1-enyl group is specified as octadec-1-enyl.
1-[(1Z)-octadec-1-enyl]-sn-glycero-3-phosphoethanolamine
A 1-(Z-alk-1-enyl)-sn-glycero-3-phosphoethanolamine in which the Z-alk-1-enyl group is specified as (1Z)-octadec-1-enyl.
etiocholanolone 3-glucuronide(1-)
A monocarboxylic acid anion resulting from the removal of a proton from the carboxy group of etiocholanolone 3-glucuronide.
PE(16:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
LdMePE(16:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PC(14:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(1s,2s,3s,4s,5s,6r,8s,9r,10s,13s,16r,17r)-11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate
11-ethyl-4,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-8-yl acetate
(1r,2s,3s,4s,5r,6s,8r,12s,13s,16r,19s,20r,21s)-14-ethyl-4,6,19-trimethoxy-16-methyl-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,21-diol
11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate
n-(3-chloro-2-{3-methyl-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-1-yl}prop-2-en-1-yl)-7-methoxy-n-methyltetradec-4-enamide
11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate
(1r,2s,3s,4s,5s,6s,8r,12r,13s,16s,19s,20r)-14-ethyl-6,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,4-diol
2-hydroxy-n-{1-[2-(2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}-3-methylpentanimidic acid
5-(2-{1-[2-(4-hydroxyphenyl)ethyl]-2,5-dioxopyrrol-3-yl}ethyl)-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid
5a,8,8,11a-tetramethyl-1-oxo-3-(pyridin-3-yl)-6,7,7a,9,10,11,11b,12-octahydro-2,5-dioxatetraphen-9-yl propanoate
20-benzyl-6,22-dihydroxy-17,18-dimethyl-2,16-dioxa-21-azatetracyclo[12.8.0.0¹,¹⁹.0¹⁵,¹⁷]docosa-4,12,21-trien-3-one
14-benzyl-6,11,16-trihydroxy-5,7,13-trimethyl-12-methylidene-5h,6h,7h,8h,10ah,11h,13h,13ah,14h-oxacyclododeca[2,3-d]isoindol-2-one
18-demethoxypubescenine
{"Ingredient_id": "HBIN002104","Ingredient_name": "18-demethoxypubescenine","Alias": "NA","Ingredient_formula": "C25H39NO7","Ingredient_Smile": "CCN1CC2(CCC(C34C2C(C(C31)(C5(CC(C6CC4C5C6OC(=O)C)OC)OC)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "5052","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
6,14-dimethoxyforesticine
{"Ingredient_id": "HBIN012005","Ingredient_name": "6,14-dimethoxyforesticine","Alias": "NA","Ingredient_formula": "C26H43NO6","Ingredient_Smile": "CCN1CC2(CCC(C34C2C(C(C31)C5(CC(C6CC4C5C6OC)OC)O)OC)OC)COC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6226","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}