Exact Mass: 465.3216

Exact Mass Matches: 465.3216

Found 248 metabolites which its exact mass value is equals to given mass value 465.3216, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Glycocholic acid

((R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine;Glycocholic acid

C26H43NO6 (465.309)


Glycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism. Glycocholic acid is a bile acid glycine conjugate having cholic acid as the bile acid component. It has a role as a human metabolite. It is functionally related to a cholic acid and a glycochenodeoxycholic acid. It is a conjugate acid of a glycocholate. Glycocholic acid is a natural product found in Caenorhabditis elegans and Homo sapiens with data available. The glycine conjugate of CHOLIC ACID. It acts as a detergent to solubilize fats for absorption and is itself absorbed. Glycocholic acid, or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. It is a conjugate of cholic acid with glycine. Its anion is called glycocholate. [Wikipedia] A bile acid glycine conjugate having cholic acid as the bile acid component. Glycocholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=475-31-0 (retrieved 2024-07-01) (CAS RN: 475-31-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

LysoSM(d18:1)

{[(2S,3R,4E)-2-amino-3-hydroxyoctadec-4-en-1-yl]oxy}[2-(trimethylazaniumyl)ethoxy]phosphinic acid

C23H50N2O5P+ (465.3457)


D-erythro-sphingosylphosphorylcholine is an intermediate in Sphingolipid metabolism. D-erythro-sphingosylphosphorylcholine is the 5th to last step in the synthesis of Digalactosylceramidesulfate and is converted from Sphingosine via the enzyme sphingosine cholinephosphotransferase ( EC 2.7.8.10). It is then converted to Sphingomyelin via the enzyme sphingosine N-acyltransferase (EC 2.3.1.24). [HMDB] D-erythro-sphingosylphosphorylcholine is an intermediate in Sphingolipid metabolism. D-erythro-sphingosylphosphorylcholine is the 5th to last step in the synthesis of Digalactosylceramidesulfate and is converted from Sphingosine via the enzyme sphingosine cholinephosphotransferase ( EC 2.7.8.10). It is then converted to Sphingomyelin via the enzyme sphingosine N-acyltransferase (EC 2.3.1.24).

   

3a,7b,12a-Trihydroxyoxocholanyl-Glycine

2-[(4R)-4-[(1S,2S,5R,7S,9S,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]pentanamido]acetic acid

C26H43NO6 (465.309)


3a,7b,12a-Trihydroxyoxocholanyl-Glycine is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID:16949895). 3a,7b,12a-Trihydroxyoxocholanyl-Glycine is a specific ketonic bile acid found in the urine of infants during the neonatal period. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. [HMDB] 3a,7b,12a-Trihydroxyoxocholanyl-Glycine is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895). 3a,7b,12a-Trihydroxyoxocholanyl-Glycine is a specific ketonic bile acid found in the urine of infants during the neonatal period. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.

   

LysoPC(14:1(9Z)/0:0)

(2-{[(2R)-2-hydroxy-3-[(9Z)-tetradec-9-enoyloxy]propyl phosphono]oxy}ethyl)trimethylazanium

C22H44NO7P (465.2855)


LysoPC(14:1(9Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(14:1(9Z)), in particular, consists of one chain of myristoleic acid at the C-1 position. The myristoleic acid moiety is derived from milk fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins. [HMDB] LysoPC(14:1(9Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(14:1(9Z)), in particular, consists of one chain of myristoleic acid at the C-1 position. The myristoleic acid moiety is derived from milk fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.

   

LysoPE(P-18:0/0:0)

(2-aminoethoxy)[(2R)-2-hydroxy-3-[(1Z)-octadec-1-en-1-yloxy]propoxy]phosphinic acid

C23H48NO6P (465.3219)


LysoPE(P-18:0/0:0) is a phospho-ether lipid. Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodelling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine, and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin and choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0, and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

Glycohyocholic acid

2-[(4R)-4-[(1S,2R,5R,7R,8R,9S,10S,11S,14R,15R)-5,8,9-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid

C26H43NO6 (465.309)


Glycohyocholic acid (GHCA) is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).

   

(8Z,11Z,13E,15S)-15-Hydroxyicosa-8,11,13-trienoylcarnitine

3-[(15-hydroxyicosa-8,11,13-trienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


(8Z,11Z,13E,15S)-15-hydroxyicosa-8,11,13-trienoylcarnitine is an acylcarnitine. More specifically, it is an (8Z,11Z,13E,15S)-15-hydroxyicosa-8,11,13-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8Z,11Z,13E,15S)-15-hydroxyicosa-8,11,13-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (8Z,11Z,13E,15S)-15-hydroxyicosa-8,11,13-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(8S,9Z,11E,14Z)-8-Hydroxyicosa-9,11,14-trienoylcarnitine

3-[(8-hydroxyicosa-9,11,14-trienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


(8S,9Z,11E,14Z)-8-hydroxyicosa-9,11,14-trienoylcarnitine is an acylcarnitine. More specifically, it is an (8S,9Z,11E,14Z)-8-hydroxyicosa-9,11,14-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8S,9Z,11E,14Z)-8-hydroxyicosa-9,11,14-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (8S,9Z,11E,14Z)-8-hydroxyicosa-9,11,14-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Icosa-5,8,11-trienoylcarnitine

3-[(3-hydroxyicosa-5,8,11-trienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


3-Icosa-5,8,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxyicosa-5,8,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Icosa-5,8,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Icosa-5,8,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Icosa-8,11,14-trienoylcarnitine

3-[(3-hydroxyicosa-8,11,14-trienoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


3-Icosa-8,11,14-trienoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxyicosa-8,11,14-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Icosa-8,11,14-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Icosa-8,11,14-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

9-(3,4-Dimethyl-5-pentylfuran-2-yl)nonanoylcarnitine

3-{[9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoyl]oxy}-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoylcarnitine is an acylcarnitine. More specifically, it is an 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-(3,4-dimethyl-5-pentylfuran-2-yl)nonanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoylcarnitine

3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoyl]oxy}-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

7-(5-Heptyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine

3-{[7-(5-heptyl-3,4-dimethylfuran-2-yl)heptanoyl]oxy}-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


7-(5-heptyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine is an acylcarnitine. More specifically, it is an 7-(5-heptyl-3,4-dimethylfuran-2-yl)heptanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 7-(5-heptyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 7-(5-heptyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

9-(5-Hexyl-3-methylfuran-2-yl)nonanoylcarnitine

3-{[9-(5-hexyl-3-methylfuran-2-yl)nonanoyl]oxy}-4-(trimethylazaniumyl)butanoate

C27H47NO5 (465.3454)


9-(5-Hexyl-3-methylfuran-2-yl)nonanoylcarnitine is an acylcarnitine. More specifically, it is an 9-(5-hexyl-3-methylfuran-2-yl)nonanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-(5-Hexyl-3-methylfuran-2-yl)nonanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-(5-Hexyl-3-methylfuran-2-yl)nonanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

N-Docosahexaenoyl Histidine

2-(docosa-4,7,10,13,16,19-hexaenamido)-3-(1H-imidazol-5-yl)propanoic acid

C28H39N3O3 (465.2991)


N-docosahexaenoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoyl amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl Histidine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Eicosapentaenoyl Tyrosine

3-(4-hydroxyphenyl)-2-(icosa-5,8,11,14,17-pentaenamido)propanoic acid

C29H39NO4 (465.2879)


N-eicosapentaenoyl tyrosine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Tyrosine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Tyrosine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Tyrosine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Choloylglycine

2-[(1-hydroxy-4-{5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}pentylidene)amino]acetic acid

C26H43NO6 (465.309)


   

Cholylglycine

N-(3Alpha,7Alpha,12Alpha-trihydroxy-5Beta-cholan-24-oyl)-glycine

C26H43NO6 (465.309)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

Dehydroacosanine

(+)-Dehydroacosanine

C25H39NO7 (465.2726)


   

Dehydrobrowniine

14-Dehydrobrowniine

C25H39NO7 (465.2726)


   

18-Demethoxypubescenine

18-Demethoxypubescenine

C25H39NO7 (465.2726)


   
   
   

14-O-Acetylsenbusine

14-O-Acetylsenbusine

C25H39NO7 (465.2726)


   

Dehydrodeltatsine

Dehydrodeltatsine

C25H39NO7 (465.2726)


   

Hoheconsoline

Hoheconsoline

C26H43NO6 (465.309)


   

14-Acetylvirescenine

14-Acetylvirescenine

C25H39NO7 (465.2726)


   
   
   

Dehydrodelsoline

Anhydrohydroxydelsoline

C25H39NO7 (465.2726)


   

14-Acetyldihydrogadesine

14-Acetyldihydrogadesine

C25H39NO7 (465.2726)


   

Phosphatidylethanolamine lyso alkenyl 18:0

Phosphatidylethanolamine lyso alkenyl 18:0

C23H48NO6P (465.3219)


   

Glycine-|A-muricholic Acid

Glycine-|A-muricholic Acid

C26H43NO6 (465.309)


   
   

Lycoctonine

Lycoctonine

C26H43NO6 (465.309)


   

16-Deethylindanomycin

16-Deethylindanomycin

C29H39NO4 (465.2879)


Origin: Microbe, Heterocyclic compounds, Pyrans

   

18-methoxyeladine|6beta,16beta-dihydroxy-7,8-methylenedioxy-1alpha,14alpha,18-trimethoxy-N-ethylaconitane

18-methoxyeladine|6beta,16beta-dihydroxy-7,8-methylenedioxy-1alpha,14alpha,18-trimethoxy-N-ethylaconitane

C25H39NO7 (465.2726)


   

anthriscifoldine B

anthriscifoldine B

C25H39NO7 (465.2726)


   

1alpha,6beta-dihydroxy-7,8-methylenedioxy-14alpha,16beta,18beta-trimethoxy-N-ethylaconitane|uraphine

1alpha,6beta-dihydroxy-7,8-methylenedioxy-14alpha,16beta,18beta-trimethoxy-N-ethylaconitane|uraphine

C25H39NO7 (465.2726)


   
   

Olivoretin C|olovoretin C

Olivoretin C|olovoretin C

C29H43N3O2 (465.3355)


   
   
   

6-acetylacosepticine|6-acetylumbrofine

6-acetylacosepticine|6-acetylumbrofine

C25H39NO7 (465.2726)


   
   

Homochasmanin

Homochasmanin

C26H43NO6 (465.309)


   

incednam|incednine aglycon

incednam|incednine aglycon

C29H39NO4 (465.2879)


   
   

PE(17:1(9Z)/0:0)

PE(17:1(9Z)/0:0)

C22H44NO7P (465.2855)


   

Glycocholic acid hydrate

MLS001332546-01!Glycocholic acid hydrate475-31-0

C26H43NO6 (465.309)


Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

glycocholate

Glycocholic acid

C26H43NO6 (465.309)


Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

C25H39NO7_(7E)-6-Hydroperoxy-11,12-dihydroxy-3-isobutyl-13-methoxy-4,5,8-trimethyl-3,3a,6,6a,9,10,11,12,13,14-decahydro-1H-cycloundeca[d]isoindole-1,15(2H)-dione

NCGC00381428-01_C25H39NO7_(7E)-6-Hydroperoxy-11,12-dihydroxy-3-isobutyl-13-methoxy-4,5,8-trimethyl-3,3a,6,6a,9,10,11,12,13,14-decahydro-1H-cycloundeca[d]isoindole-1,15(2H)-dione

C25H39NO7 (465.2726)


   

Glycocholic acid

N-cholylglycine;3alpha,7beta,12alpha-Trihydroxyoxocholanyl-Glycine

C26H43NO6 (465.309)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RFDAIACWWDREDC-FRVQLJSFSA-N_STSL_0092_Glycocholic acid_8000fmol_180416_S2_LC02_MS02_93; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1]. Glycocholic acid is a bile acid with anticancer activity, targeting against pump resistance-related and non-pump resistance-related pathways[1].

   

Glycohyocholic acid

Glycohyocholic acid

C26H43NO6 (465.309)


A bile acid glycine conjugate having hyocholic acid as the bile acid component. CONFIDENCE standard compound; INTERNAL_ID 74

   

N-[(3alpha,5beta,7alpha,12alpha)-3,7,12-trihydroxy-24-oxocholan-24-yl]glycine

N-[(3alpha,5beta,7alpha,12alpha)-3,7,12-trihydroxy-24-oxocholan-24-yl]glycine

C26H43NO6 (465.309)


BA-133-150. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-133-120. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-133-90. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan.

   

sodium glycocholate

2-(4-{5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}pentanamido)acetic acid

C26H43NO6 (465.309)


   

Glycocholic acid; LC-tDDA; CE10

Glycocholic acid; LC-tDDA; CE10

C26H43NO6 (465.309)


   

Glycocholic acid; LC-tDDA; CE20

Glycocholic acid; LC-tDDA; CE20

C26H43NO6 (465.309)


   

Glycocholic acid; LC-tDDA; CE30

Glycocholic acid; LC-tDDA; CE30

C26H43NO6 (465.309)


   

Glycocholic acid; LC-tDDA; CE40

Glycocholic acid; LC-tDDA; CE40

C26H43NO6 (465.309)


   

Glycocholic Acid_major

Glycocholic Acid_major

C26H43NO6 (465.309)


   

Glycocholic Acid_minor

Glycocholic Acid_minor

C26H43NO6 (465.309)


   

((4R)-4-((3R,5S,6R,7S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine

"((4R)-4-((3R,5S,6R,7S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine"

C26H43NO6 (465.309)


   

((R)-4-((3R,5S,7S,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine

"((R)-4-((3R,5S,7S,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)glycine"

C26H43NO6 (465.309)


   

PC(14:1/0:0)

3,5,9-Trioxa-4-phosphatricos-18-en-1-aminium, 4,7-dihydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide, [R-(Z)]-

C22H44NO7P (465.2855)


   

PC(14:2l8,8/0:0)[U]

3,5,9-Trioxa-4-phosphatricosan-1-aminium, 17,17-difluoro-4,7-dihydroxy-N,N,N-trimethyl-10-oxo-, inner salt, 4-oxide

C22H44NO7P (465.2855)


   

PC(P-15:0/0:0)

3,5,9-Trioxa-4-phosphatetracos-10-en-1-aminium, 4,7-dihydroxy-N,N,N-trimethyl-, inner salt, 4-oxide, [R-(Z)]-

C23H48NO6P (465.3219)


   

PE(17:1/0:0)

1-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine

C22H44NO7P (465.2855)


   

PE(O-18:1/0:0)

1-(9Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

C23H48NO6P (465.3219)


   

PE(P-18:0/0:0)

1-(1Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

C23H48NO6P (465.3219)


   

LPC(14:1)

1-Myristoleoyl-glycero-3-phosphocholine

C22H44NO7P (465.2855)


   

N-docosahexaenoyl histidine

N-(4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoyl)-histidine

C28H39N3O3 (465.2991)


   

LPC 14:1

1-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine

C22H44NO7P (465.2855)


   

LPC O-15:1

1-(1Z-pentadecenyl)-sn-glycero-3-phosphocholine

C23H48NO6P (465.3219)


   

LPE 17:1

1-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine

C22H44NO7P (465.2855)


   

LysoPE O-18:1

1-(1Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

C23H48NO6P (465.3219)


   

ST 24:1;O5;G

N-(3alpha,7beta,12alpha-trihydroxy-5beta-cholan-24-oyl)-glycine

C26H43NO6 (465.309)


   

Cytochalasin J1

Cytochalasin J1

C29H39NO4 (465.2879)


   

Cytochalasin H2

Cytochalasin H2

C29H39NO4 (465.2879)


   

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid,hydrate

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid,hydrate

C26H43NO6 (465.309)


   

PHOSPHOENOLPYRUVIC ACID TRIS(CYCLOHEXYLAMMONIUM) SALT

PHOSPHOENOLPYRUVIC ACID TRIS(CYCLOHEXYLAMMONIUM) SALT

C21H44N3O6P (465.2968)


   

Tricyclohexanaminium 2-(phosphonatooxy)acrylate

Tricyclohexanaminium 2-(phosphonatooxy)acrylate

C21H44N3O6P (465.2968)


Phosphoenolpyruvic acid tricyclohexylammoniu?m salt is a glycolysis metabolite with a high-energy phosphate group, penetrates the cell membrane and exhibits cytoprotective and anti-oxidative activity[1].

   

Morpholinium, 4-ethyl-4-hexadecyl-, ethyl sulfate (1:1)

Morpholinium, 4-ethyl-4-hexadecyl-, ethyl sulfate (1:1)

C24H51NO5S (465.3488)


   

1-Azoniabicyclo(2.2.2)octane, 1-(2-(4-fluorophenyl)ethyl)-3-((2S)-1-oxo-2-phenyl-2-(1-piperidinyl)propoxy)-, (3R)-

1-Azoniabicyclo(2.2.2)octane, 1-(2-(4-fluorophenyl)ethyl)-3-((2S)-1-oxo-2-phenyl-2-(1-piperidinyl)propoxy)-, (3R)-

C29H38FN2O2+ (465.2917)


   

Olivoretin

Olivoretin

C29H43N3O2 (465.3355)


D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Olivoretin C

Olivoretin C

C29H43N3O2 (465.3355)


D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-(3-hydroxypropylamino)-5,6-dimethyl-1H-benzo[d]imidazol-1-yl)ethanone

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2-(3-hydroxypropylamino)-5,6-dimethyl-1H-benzo[d]imidazol-1-yl)ethanone

C28H39N3O3 (465.2991)


   

Glycocholic acid (D4)

Glycocholic acid (D4)

C26H43NO6 (465.309)


   

Phosphoric acid, mono(2-aminoethyl) mono[2-hydroxy-3-(1-octadecenyloxy)propyl] ester, (R)-

Phosphoric acid, mono(2-aminoethyl) mono[2-hydroxy-3-(1-octadecenyloxy)propyl] ester, (R)-

C23H48NO6P (465.3219)


   

Glycine-

a-Muricholic acid

C26H43NO6 (465.309)


   

2-Amino-3-hydroxyoctadec-4-en-1-yl 2-(trimethylazaniumyl)ethyl phosphate

2-Amino-3-hydroxyoctadec-4-en-1-yl 2-(trimethylazaniumyl)ethyl phosphate

C23H50N2O5P+ (465.3457)


   

(3-beta)-Cholest-5-en-3-ol-3-(hydrogen sulfate)

(3-beta)-Cholest-5-en-3-ol-3-(hydrogen sulfate)

C27H45O4S- (465.3038)


   

Olivoretin B

Olivoretin B

C29H43N3O2 (465.3355)


D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

(6S,9S,14R)-17-butyl-14-ethenyl-6-(methoxymethyl)-10,14-dimethyl-9-propan-2-yl-2,7,10-triazatetracyclo[9.7.1.04,19.013,18]nonadeca-1(18),3,11(19),12-tetraen-8-one

(6S,9S,14R)-17-butyl-14-ethenyl-6-(methoxymethyl)-10,14-dimethyl-9-propan-2-yl-2,7,10-triazatetracyclo[9.7.1.04,19.013,18]nonadeca-1(18),3,11(19),12-tetraen-8-one

C29H43N3O2 (465.3355)


   

9-(5-Hexyl-3-methylfuran-2-yl)nonanoylcarnitine

9-(5-Hexyl-3-methylfuran-2-yl)nonanoylcarnitine

C27H47NO5 (465.3454)


   

9-(3,4-Dimethyl-5-pentylfuran-2-yl)nonanoylcarnitine

9-(3,4-Dimethyl-5-pentylfuran-2-yl)nonanoylcarnitine

C27H47NO5 (465.3454)


   

7-(5-Heptyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine

7-(5-Heptyl-3,4-dimethylfuran-2-yl)heptanoylcarnitine

C27H47NO5 (465.3454)


   

11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoylcarnitine

11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoylcarnitine

C27H47NO5 (465.3454)


   

Lysosphingomyelin chloride

Lysosphingomyelin chloride

C23H50N2O5P+ (465.3457)


   

N-Eicosapentaenoyl Tyrosine

N-Eicosapentaenoyl Tyrosine

C29H39NO4 (465.2879)


   

3-Icosa-5,8,11-trienoylcarnitine

3-Icosa-5,8,11-trienoylcarnitine

C27H47NO5 (465.3454)


   

3-Icosa-8,11,14-trienoylcarnitine

3-Icosa-8,11,14-trienoylcarnitine

C27H47NO5 (465.3454)


   

(8S,9Z,11E,14Z)-8-Hydroxyicosa-9,11,14-trienoylcarnitine

(8S,9Z,11E,14Z)-8-Hydroxyicosa-9,11,14-trienoylcarnitine

C27H47NO5 (465.3454)


   

(8Z,11Z,13E,15S)-15-Hydroxyicosa-8,11,13-trienoylcarnitine

(8Z,11Z,13E,15S)-15-Hydroxyicosa-8,11,13-trienoylcarnitine

C27H47NO5 (465.3454)


   

2-[[(4E,7E,10E,13E,16E,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-(1H-imidazol-5-yl)propanoic acid

2-[[(4E,7E,10E,13E,16E,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-(1H-imidazol-5-yl)propanoic acid

C28H39N3O3 (465.2991)


   

2-[[(4R)-1-oxo-4-[(3R,7R,10S,12S,13R,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentyl]amino]acetic acid

2-[[(4R)-1-oxo-4-[(3R,7R,10S,12S,13R,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentyl]amino]acetic acid

C26H43NO6 (465.309)


   

1-(1-Adamantyl)-3-[8-[[1-(2-furanylmethyl)-5-tetrazolyl]methyl]-8-azabicyclo[3.2.1]octan-3-yl]urea

1-(1-Adamantyl)-3-[8-[[1-(2-furanylmethyl)-5-tetrazolyl]methyl]-8-azabicyclo[3.2.1]octan-3-yl]urea

C25H35N7O2 (465.2852)


   

(24S)-3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestan-26-oate

(24S)-3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestan-26-oate

C27H45O6- (465.3216)


3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestan-26-oate with S configuration at C-24; major microspecies at pH 7.3.

   

1-(10z-Heptadecenoyl)-sn-glycero-3-phosphoethanolamine

1-(10z-Heptadecenoyl)-sn-glycero-3-phosphoethanolamine

C22H44NO7P (465.2855)


   

(2R,3R)-2-[[cyclopentylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

(2R,3R)-2-[[cyclopentylmethyl(methyl)amino]methyl]-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

C28H39N3O3 (465.2991)


   

(2S,3S)-2-[[cyclopentylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

(2S,3S)-2-[[cyclopentylmethyl(methyl)amino]methyl]-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-8-(4-methylphenyl)-3,4-dihydro-2H-pyrido[2,3-b][1,5]oxazocin-6-one

C28H39N3O3 (465.2991)


   

Phosphatidylethanolamine lyso alkenyl 18

Phosphatidylethanolamine lyso alkenyl 18

C23H48NO6P (465.3219)


   

3alpha,7alpha,12alpha,24-Tetrahydroxy-5beta-cholestan-26-oate

3alpha,7alpha,12alpha,24-Tetrahydroxy-5beta-cholestan-26-oate

C27H45O6- (465.3216)


The steroid acid anion formed by proton loss from the carboxy group of 3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestan-26-oic acid; major micro-species at pH 7.3.

   

2-[[(4R)-4-[(3R,5S,7R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid

2-[[(4R)-4-[(3R,5S,7R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid

C26H43NO6 (465.309)


   

2-azaniumylethyl (2R)-2-hydroxy-3-[(octadec-1-en-1-yl)oxy]propyl phosphate

2-azaniumylethyl (2R)-2-hydroxy-3-[(octadec-1-en-1-yl)oxy]propyl phosphate

C23H48NO6P (465.3219)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-heptadec-10-enoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-heptadec-10-enoate

C22H44NO7P (465.2855)


   

Glycocholic acid hydrate

Glycocholic acid hydrate

C26H43NO6 (465.309)


   

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid

2-[[(4R)-4-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetic acid

C26H43NO6 (465.309)


   
   

2-aminoethyl [2-hydroxy-3-[(Z)-octadec-9-enoxy]propyl] hydrogen phosphate

2-aminoethyl [2-hydroxy-3-[(Z)-octadec-9-enoxy]propyl] hydrogen phosphate

C23H48NO6P (465.3219)


   

[2-hydroxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-hydroxy-3-[(Z)-pentadec-9-enoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C23H48NO6P (465.3219)


   

[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-hydroxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C22H44NO7P (465.2855)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-heptadec-9-enoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] (Z)-heptadec-9-enoate

C22H44NO7P (465.2855)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] acetate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] acetate

C22H44NO7P (465.2855)


   

3-Hydroxy-2-(2-hydroxydodecanoylamino)undecane-1-sulfonic acid

3-Hydroxy-2-(2-hydroxydodecanoylamino)undecane-1-sulfonic acid

C23H47NO6S (465.3124)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] butanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] butanoate

C22H44NO7P (465.2855)


   

3-Hydroxy-2-(2-hydroxytridecanoylamino)decane-1-sulfonic acid

3-Hydroxy-2-(2-hydroxytridecanoylamino)decane-1-sulfonic acid

C23H47NO6S (465.3124)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] propanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] propanoate

C22H44NO7P (465.2855)


   

2-[4-[(3R,5S,7R,8R,9S,12S,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

2-[4-[(3R,5S,7R,8R,9S,12S,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

C26H43NO6 (465.309)


   

lysoDGTS 16:4

lysoDGTS 16:4

C26H43NO6 (465.309)


   
   
   

Octadecenyllysoplasmenylethanolamine

Octadecenyllysoplasmenylethanolamine

C23H48NO6P (465.3219)


   

2-[hydroxy-[(E)-3-hydroxy-2-(pentanoylamino)dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-(pentanoylamino)dodec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

2-[[(E)-2-acetamido-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-acetamido-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

2-[hydroxy-[(E)-3-hydroxy-2-(propanoylamino)tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-(propanoylamino)tetradec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

2-[hydroxy-[(E)-3-hydroxy-2-(octanoylamino)non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-(octanoylamino)non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

2-[[(E)-2-(heptanoylamino)-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-(heptanoylamino)-3-hydroxydec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

2-[[(E)-2-(hexanoylamino)-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-(hexanoylamino)-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

2-[hydroxy-[(E)-3-hydroxy-2-(nonanoylamino)oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-(nonanoylamino)oct-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

2-[[(E)-2-(butanoylamino)-3-hydroxytridec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-(butanoylamino)-3-hydroxytridec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C22H46N2O6P+ (465.3093)


   

Sphing-4-enine-1-phosphocholine

Sphing-4-enine-1-phosphocholine

C23H50N2O5P+ (465.3457)


   

cholesterol sulfate(1-)

cholesterol sulfate(1-)

C27H45O4S (465.3038)


A steroid sulfate oxoanion obtained by deprotonation of the sulfo group of cholesterol sulfate; major species at pH 7.3.

   

3a,7b,12a-Trihydroxyoxocholanyl-Glycine

3a,7b,12a-Trihydroxyoxocholanyl-Glycine

C26H43NO6 (465.309)


   

1-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine

1-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine

C22H44NO7P (465.2855)


   

1-(1Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

1-(1Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

C23H48NO6P (465.3219)


   

1-(9Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

1-(9Z-octadecenyl)-sn-glycero-3-phosphoethanolamine

C23H48NO6P (465.3219)


   

1-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine

1-(9Z-heptadecenoyl)-sn-glycero-3-phosphoethanolamine

C22H44NO7P (465.2855)


   

1-(1Z-pentadecenyl)-sn-glycero-3-phosphocholine

1-(1Z-pentadecenyl)-sn-glycero-3-phosphocholine

C23H48NO6P (465.3219)


   

1-(octadec-1-enyl)-sn-glycero-3-phosphoethanolamine zwitterion

1-(octadec-1-enyl)-sn-glycero-3-phosphoethanolamine zwitterion

C23H48NO6P (465.3219)


1-(alk-1-enyl)-sn-glycero-3-phosphoethanolamine zwitterion in which the alk-1-enyl group is specified as octadec-1-enyl.

   

lysophosphatidylcholine 14:1

lysophosphatidylcholine 14:1

C22H44NO7P (465.2855)


A lysophosphatidylcholine in which the remaining acyl group contains 14 carbons and 1 double bond. If R1 is the acyl group and R2 is a hydrogen then the molecule is a 1-acyl-sn-glycero-3-phosphocholine. If R1 is a hydrogen and R2 is the acyl group then the molecule is a 2-acyl-sn-glycero-3-phosphocholine.

   

lysophosphatidylcholine 14:1(9Z)/0:0

lysophosphatidylcholine 14:1(9Z)/0:0

C22H44NO7P (465.2855)


A lysophosphatidylcholine 14:1 in which the remaining acyl group is (9Z)-tetradecenoyl.

   

1-(octadec-1-enyl)-sn-glycero-3-phosphoethanolamine

1-(octadec-1-enyl)-sn-glycero-3-phosphoethanolamine

C23H48NO6P (465.3219)


1-(alk-1-enyl)-sn-glycero-3-phosphoethanolamine in which the alk-1-enyl group is specified as octadec-1-enyl.

   

1-[(1Z)-octadec-1-enyl]-sn-glycero-3-phosphoethanolamine

1-[(1Z)-octadec-1-enyl]-sn-glycero-3-phosphoethanolamine

C23H48NO6P (465.3219)


A 1-(Z-alk-1-enyl)-sn-glycero-3-phosphoethanolamine in which the Z-alk-1-enyl group is specified as (1Z)-octadec-1-enyl.

   

glyco-beta-muricholic acid

glyco-beta-muricholic acid

C26H43NO6 (465.309)


   

glyco-beta-muricholic acid

glyco-beta-muricholic acid

C26H43NO6 (465.309)


   

LdMePE(16:1)

LdMePE(16:1(1))

C23H48NO6P (465.3219)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PC(14:1)

PC(8:1(1)_6:0)

C22H44NO7P (465.2855)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

NA-Cit 20:2(11Z,14Z)

NA-Cit 20:2(11Z,14Z)

C26H47N3O4 (465.3566)


   

NA-Dopamine 22:5(7Z,10Z,13Z,16Z,19Z)

NA-Dopamine 22:5(7Z,10Z,13Z,16Z,19Z)

C30H43NO3 (465.3243)


   

NA-Glu 22:2(13Z,16Z)

NA-Glu 22:2(13Z,16Z)

C27H47NO5 (465.3454)


   

NA-His 22:6(4Z,7Z,10Z,12E,16Z,19Z)

NA-His 22:6(4Z,7Z,10Z,12E,16Z,19Z)

C28H39N3O3 (465.2991)


   

NA-Tyr 20:5(5Z,8Z,11Z,14Z,17Z)

NA-Tyr 20:5(5Z,8Z,11Z,14Z,17Z)

C29H39NO4 (465.2879)


   
   
   
   
   
   

LPC P-15:0 or LPC O-15:1

LPC P-15:0 or LPC O-15:1

C23H48NO6P (465.3219)


   
   

LPE P-18:0 or LPE O-18:1

LPE P-18:0 or LPE O-18:1

C23H48NO6P (465.3219)


   

Gly-alphaMCA

Gly-alphaMCA

C26H43NO6 (465.309)


   

Glycoursocholic acid

Glycoursocholic acid

C26H43NO6 (465.309)


   

ST 23:2;O5;Gly

ST 23:2;O5;Gly

C25H39NO7 (465.2726)


   

ST 24:1;O4;Gly

ST 24:1;O4;Gly

C26H43NO6 (465.309)


   

ST 25:0;O3;Gly

ST 25:0;O3;Gly

C27H47NO5 (465.3454)


   

ST 27:6;O2;Gly

ST 27:6;O2;Gly

C29H39NO4 (465.2879)


   

ST 18:0;O;HexNAc

ST 18:0;O;HexNAc

C26H43NO6 (465.309)


   

Glyco-α-muricholic acid

*Glyco-α-muricholic acid

C26H43NO6 (465.309)


   

(1s,2s,3s,4s,5s,6r,8s,9r,10s,13s,16r,17r)-11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

(1s,2s,3s,4s,5s,6r,8s,9r,10s,13s,16r,17r)-11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

11-ethyl-4,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-8-yl acetate

11-ethyl-4,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-8-yl acetate

C25H39NO7 (465.2726)


   

(6s,9s,14r,17r)-17-ethenyl-9,14-diisopropyl-6-(methoxymethyl)-10,14,17-trimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

(6s,9s,14r,17r)-17-ethenyl-9,14-diisopropyl-6-(methoxymethyl)-10,14,17-trimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

C29H43N3O2 (465.3355)


   

(1r,2s,3s,4s,5r,6s,8r,12s,13s,16r,19s,20r,21s)-14-ethyl-4,6,19-trimethoxy-16-methyl-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,21-diol

(1r,2s,3s,4s,5r,6s,8r,12s,13s,16r,19s,20r,21s)-14-ethyl-4,6,19-trimethoxy-16-methyl-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,21-diol

C25H39NO7 (465.2726)


   

11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate

11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate

C25H39NO7 (465.2726)


   

11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

(1r,2s,3s,4s,5s,6s,8r,12r,13s,16s,19s,20r)-14-ethyl-6,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,4-diol

(1r,2s,3s,4s,5s,6s,8r,12r,13s,16s,19s,20r)-14-ethyl-6,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,4-diol

C25H39NO7 (465.2726)


   

2-hydroxy-n-{1-[2-(2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}-3-methylpentanimidic acid

2-hydroxy-n-{1-[2-(2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}-3-methylpentanimidic acid

C24H39N3O6 (465.2839)


   

(6s,9s,14s,17r)-17-ethenyl-9,14-diisopropyl-6-(methoxymethyl)-10,14,17-trimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

(6s,9s,14s,17r)-17-ethenyl-9,14-diisopropyl-6-(methoxymethyl)-10,14,17-trimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

C29H43N3O2 (465.3355)


   

18-demethoxypubescenine

NA

C25H39NO7 (465.2726)


{"Ingredient_id": "HBIN002104","Ingredient_name": "18-demethoxypubescenine","Alias": "NA","Ingredient_formula": "C25H39NO7","Ingredient_Smile": "CCN1CC2(CCC(C34C2C(C(C31)(C5(CC(C6CC4C5C6OC(=O)C)OC)OC)O)O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "5052","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

6,14-dimethoxyforesticine

NA

C26H43NO6 (465.309)


{"Ingredient_id": "HBIN012005","Ingredient_name": "6,14-dimethoxyforesticine","Alias": "NA","Ingredient_formula": "C26H43NO6","Ingredient_Smile": "CCN1CC2(CCC(C34C2C(C(C31)C5(CC(C6CC4C5C6OC)OC)O)OC)OC)COC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "6226","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

4-ethyl-12,14,16-trimethoxy-10-(methoxymethyl)-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-13,18-diol

4-ethyl-12,14,16-trimethoxy-10-(methoxymethyl)-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-13,18-diol

C25H39NO7 (465.2726)


   

14-ethyl-4,6-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-19,21-diol

14-ethyl-4,6-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-19,21-diol

C25H39NO7 (465.2726)


   

[(1s,2r,3r,4s,5r,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methanol

[(1s,2r,3r,4s,5r,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methanol

C26H43NO6 (465.309)


   

(1s,2r,3r,4s,5r,6s,8r,12s,13s,16s,19s,20r,21s)-14-ethyl-4,6-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-19,21-diol

(1s,2r,3r,4s,5r,6s,8r,12s,13s,16s,19s,20r,21s)-14-ethyl-4,6-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-19,21-diol

C25H39NO7 (465.2726)


   

(1s,2r,3s,5r,6s,8r,9s,10s,13s,16r,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

(1s,2r,3s,5r,6s,8r,9s,10s,13s,16r,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

C25H39NO7 (465.2726)


   

14-ethyl-4,6,19-trimethoxy-16-methyl-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,21-diol

14-ethyl-4,6,19-trimethoxy-16-methyl-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,21-diol

C25H39NO7 (465.2726)


   

(1s,2r,3r,4s,5r,6s,8r,9r,10s,13s,16s,17r,18s)-11,18-diethyl-13-(hydroxymethyl)-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-8,9-diol

(1s,2r,3r,4s,5r,6s,8r,9r,10s,13s,16s,17r,18s)-11,18-diethyl-13-(hydroxymethyl)-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-8,9-diol

C26H43NO6 (465.309)


   

(3s,3ar,4s,6s,6ar,10r,14r)-3-benzyl-1,6,14-trihydroxy-4,10-dimethyl-5-methylidene-3h,3ah,4h,6h,6ah,9h,10h,11h,12h,13h,14h,15h,16h-cyclotrideca[d]isoindol-17-one

(3s,3ar,4s,6s,6ar,10r,14r)-3-benzyl-1,6,14-trihydroxy-4,10-dimethyl-5-methylidene-3h,3ah,4h,6h,6ah,9h,10h,11h,12h,13h,14h,15h,16h-cyclotrideca[d]isoindol-17-one

C29H39NO4 (465.2879)


   

7,8,19-trihydroxy-2,10-dimethyl-17-(octa-2,4-dien-1-yl)-16-azatetracyclo[12.6.0.0⁴,⁹.0¹⁶,²⁰]icosa-2,5,10,12-tetraen-15-one

7,8,19-trihydroxy-2,10-dimethyl-17-(octa-2,4-dien-1-yl)-16-azatetracyclo[12.6.0.0⁴,⁹.0¹⁶,²⁰]icosa-2,5,10,12-tetraen-15-one

C29H39NO4 (465.2879)


   

2-hydroxy-n-{1-[2-(2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}-n,3-dimethylbutanamide

2-hydroxy-n-{1-[2-(2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}-n,3-dimethylbutanamide

C24H39N3O6 (465.2839)


   

(1s,2r,3r,4s,5r,6s,8r,9r,10s,13s,16s,17r)-11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-one

(1s,2r,3r,4s,5r,6s,8r,9r,10s,13s,16s,17r)-11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-one

C25H39NO7 (465.2726)


   

(1s,2r,3r,4s,5s,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-4,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-8-yl acetate

(1s,2r,3r,4s,5s,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-4,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-8-yl acetate

C25H39NO7 (465.2726)


   

(1r,2r,3r,4r,5r,6s,8r,9s,10s,13r,16s,17s,18s)-11-ethyl-8,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

(1r,2r,3r,4r,5r,6s,8r,9s,10s,13r,16s,17s,18s)-11-ethyl-8,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

(1s,2r,3r,4s,5r,6s,8r,9s,10s,13r,16s,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate

(1s,2r,3r,4s,5r,6s,8r,9s,10s,13r,16s,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate

C25H39NO7 (465.2726)


   

(2r)-3-[(2,12-dimethyltridecanoyl)oxy]-2-hydroxypropyl 2-(trimethylammonio)ethylphosphonate

(2r)-3-[(2,12-dimethyltridecanoyl)oxy]-2-hydroxypropyl 2-(trimethylammonio)ethylphosphonate

C23H48NO6P (465.3219)


   

(2e,4e)-10-[(2r,3s,4r,6r,8s,10s,11s)-4,10-dihydroxy-2,3,11-trimethyl-1-oxaspiro[5.5]undecan-8-yl]-4-ethyl-8-(hydroxymethyl)undeca-2,4-dienimidic acid

(2e,4e)-10-[(2r,3s,4r,6r,8s,10s,11s)-4,10-dihydroxy-2,3,11-trimethyl-1-oxaspiro[5.5]undecan-8-yl]-4-ethyl-8-(hydroxymethyl)undeca-2,4-dienimidic acid

C27H47NO5 (465.3454)


   

(2s)-2-hydroxy-n-[(2s)-1-[(2s)-2-[(2s)-2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-n,3-dimethylbutanamide

(2s)-2-hydroxy-n-[(2s)-1-[(2s)-2-[(2s)-2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-n,3-dimethylbutanamide

C24H39N3O6 (465.2839)


   

11-ethyl-9,16,18-trihydroxy-6,8-dimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

11-ethyl-9,16,18-trihydroxy-6,8-dimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

11,18-diethyl-13-(hydroxymethyl)-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-8,9-diol

11,18-diethyl-13-(hydroxymethyl)-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-8,9-diol

C26H43NO6 (465.309)


   

14-ethyl-4,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-6,21-diol

14-ethyl-4,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-6,21-diol

C25H39NO7 (465.2726)


   

(1s,2r,3r,4s,5s,6s,8r,12s,13s,16s,19s,20r,21s)-14-ethyl-6,21-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-4,19-diol

(1s,2r,3r,4s,5s,6s,8r,12s,13s,16s,19s,20r,21s)-14-ethyl-6,21-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-4,19-diol

C25H39NO7 (465.2726)


   

[(1r,2r,3r,4r,5r,6s,8r,9s,10s,13r,16r,17s,18s)-11-ethyl-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methanol

[(1r,2r,3r,4r,5r,6s,8r,9s,10s,13r,16r,17s,18s)-11-ethyl-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methanol

C26H43NO6 (465.309)


   

(1s,2s,3s,4r,5s,6s,8s,9s,10s,13r,16s,17r,18r)-11-ethyl-8,9,16-trihydroxy-6,18-dimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

(1s,2s,3s,4r,5s,6s,8s,9s,10s,13r,16s,17r,18r)-11-ethyl-8,9,16-trihydroxy-6,18-dimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

(1s,2r,3r,4s,5r,6s,8r,12s,13s,16s,19s,20r,21s)-14-ethyl-4,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-6,21-diol

(1s,2r,3r,4s,5r,6s,8r,12s,13s,16s,19s,20r,21s)-14-ethyl-4,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-6,21-diol

C25H39NO7 (465.2726)


   

(1s,2s,3s,4s,5r,6r,8s,12s,13s,16s,19r,20r,21r)-14-ethyl-6,21-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-4,19-diol

(1s,2s,3s,4s,5r,6r,8s,12s,13s,16s,19r,20r,21r)-14-ethyl-6,21-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-4,19-diol

C25H39NO7 (465.2726)


   

(2r)-2-[(2s,5r,6r)-6-[(3e,5e)-6-[(3as,4r,5r,7ar)-4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl]-5-methyloxan-2-yl]propanoic acid

(2r)-2-[(2s,5r,6r)-6-[(3e,5e)-6-[(3as,4r,5r,7ar)-4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl]-5-methyloxan-2-yl]propanoic acid

C29H39NO4 (465.2879)


   

11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-one

11-ethyl-8,9-dihydroxy-4,6,16-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-one

C25H39NO7 (465.2726)


   

(2s,3s)-2-hydroxy-n-[(2s)-1-[(2s)-2-[(2s)-2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-3-methylpentanimidic acid

(2s,3s)-2-hydroxy-n-[(2s)-1-[(2s)-2-[(2s)-2-isopropyl-3-methoxy-5-oxo-2h-pyrrole-1-carbonyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-3-methylpentanimidic acid

C24H39N3O6 (465.2839)


   

(2r)-2-[(5s,6r)-5-methyl-6-[(3e,5e)-6-[(4s,5r)-4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl]oxan-2-yl]propanoic acid

(2r)-2-[(5s,6r)-5-methyl-6-[(3e,5e)-6-[(4s,5r)-4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl]oxan-2-yl]propanoic acid

C29H39NO4 (465.2879)


   

n-[(1s,3as,3bs,5ar,7s,9ar,9bs,11as)-1-[(1s)-1-(dimethylamino)ethyl]-9a,11a-dimethyl-6-oxo-tetradecahydrocyclopenta[a]phenanthren-7-yl]pyridine-3-carboximidic acid

n-[(1s,3as,3bs,5ar,7s,9ar,9bs,11as)-1-[(1s)-1-(dimethylamino)ethyl]-9a,11a-dimethyl-6-oxo-tetradecahydrocyclopenta[a]phenanthren-7-yl]pyridine-3-carboximidic acid

C29H43N3O2 (465.3355)


   

(1s,2r,3r,4s,5r,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-8,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

(1s,2r,3r,4s,5r,6s,8r,9r,10r,13s,16s,17r,18r)-11-ethyl-8,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

C25H39NO7 (465.2726)


   

(4s,6s,8s,10s,12s,13e,15e)-18-isocyano-4,6,8,10,12-pentamethoxy-13,15-dimethylnonadeca-1,13,15-triene

(4s,6s,8s,10s,12s,13e,15e)-18-isocyano-4,6,8,10,12-pentamethoxy-13,15-dimethylnonadeca-1,13,15-triene

C27H47NO5 (465.3454)


   

n-{1-[1-(dimethylamino)ethyl]-9a,11a-dimethyl-6-oxo-tetradecahydrocyclopenta[a]phenanthren-7-yl}pyridine-3-carboximidic acid

n-{1-[1-(dimethylamino)ethyl]-9a,11a-dimethyl-6-oxo-tetradecahydrocyclopenta[a]phenanthren-7-yl}pyridine-3-carboximidic acid

C29H43N3O2 (465.3355)


   

(3z,5e,7e,9e,11r,12s,13z,15e,17e,19e,21e,24s)-3-methoxy-5,11,17,21,24-pentamethyl-1-azacyclotetracosa-1,3,5,7,9,13,15,17,19,21-decaene-2,11,12-triol

(3z,5e,7e,9e,11r,12s,13z,15e,17e,19e,21e,24s)-3-methoxy-5,11,17,21,24-pentamethyl-1-azacyclotetracosa-1,3,5,7,9,13,15,17,19,21-decaene-2,11,12-triol

C29H39NO4 (465.2879)


   

(2r)-2-[(2r,5s,6r)-6-[(3e,5e)-6-[(3ar,4s,5r,7as)-4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl]-5-methyloxan-2-yl]propanoic acid

(2r)-2-[(2r,5s,6r)-6-[(3e,5e)-6-[(3ar,4s,5r,7as)-4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl]-5-methyloxan-2-yl]propanoic acid

C29H39NO4 (465.2879)


   

(1s,2r,3s,5r,6s,8r,9r,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

(1s,2r,3s,5r,6s,8r,9r,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

C25H39NO7 (465.2726)


   

(1r,2s,3s,7s,10r,11s,12s,13s,14r,16s,17r,18s,19r)-4-ethyl-12,16,18-trimethoxy-10-(methoxymethyl)-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-13,14-diol

(1r,2s,3s,7s,10r,11s,12s,13s,14r,16s,17r,18s,19r)-4-ethyl-12,16,18-trimethoxy-10-(methoxymethyl)-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-13,14-diol

C25H39NO7 (465.2726)


   

10-{4,10-dihydroxy-2,3,11-trimethyl-1-oxaspiro[5.5]undecan-8-yl}-4-ethyl-8-(hydroxymethyl)undeca-2,4-dienimidic acid

10-{4,10-dihydroxy-2,3,11-trimethyl-1-oxaspiro[5.5]undecan-8-yl}-4-ethyl-8-(hydroxymethyl)undeca-2,4-dienimidic acid

C27H47NO5 (465.3454)


   

(1r,2s,3s,5r,7s,10r,11s,12s,13s,14r,16s,17s,18s,19r)-4-ethyl-12,14,16-trimethoxy-10-(methoxymethyl)-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-13,18-diol

(1r,2s,3s,5r,7s,10r,11s,12s,13s,14r,16s,17s,18s,19r)-4-ethyl-12,14,16-trimethoxy-10-(methoxymethyl)-6-oxa-4-azaheptacyclo[15.2.1.0²,⁷.0²,¹¹.0³,¹³.0⁵,¹⁰.0¹⁴,¹⁹]icosane-13,18-diol

C25H39NO7 (465.2726)


   

(1r,2r,3s,5r,6s,8r,9r,10r,13r,16r,17s,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

(1r,2r,3s,5r,6s,8r,9r,10r,13r,16r,17s,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

C25H39NO7 (465.2726)


   

{11-ethyl-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl}methanol

{11-ethyl-4,6,8,16,18-pentamethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl}methanol

C26H43NO6 (465.309)


   

14-ethyl-6,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,4-diol

14-ethyl-6,19-dimethoxy-16-(methoxymethyl)-9,11-dioxa-14-azaheptacyclo[10.7.2.1²,⁵.0¹,¹³.0³,⁸.0⁸,¹².0¹⁶,²⁰]docosane-2,4-diol

C25H39NO7 (465.2726)


   

2-(5-methyl-6-{6-[4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl}oxan-2-yl)propanoic acid

2-(5-methyl-6-{6-[4-(1h-pyrrole-2-carbonyl)-2,3,3a,4,5,7a-hexahydro-1h-inden-5-yl]hexa-3,5-dien-3-yl}oxan-2-yl)propanoic acid

C29H39NO4 (465.2879)


   

(6s,9s,14r,17r)-17-tert-butyl-14-ethenyl-9-isopropyl-6-(methoxymethyl)-10,14-dimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

(6s,9s,14r,17r)-17-tert-butyl-14-ethenyl-9-isopropyl-6-(methoxymethyl)-10,14-dimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

C29H43N3O2 (465.3355)


   

(2s,3as,6s,9ar,10ar)-7'-[(2s)-3,3-dimethyloxirane-2-carbonyl]-1,1,6-trimethyl-3a-(methylamino)-4,6,7,8,9,9a,10,10a-octahydro-3h-spiro[cyclopenta[b]quinolizine-2,3'-indol]-2'-ol

(2s,3as,6s,9ar,10ar)-7'-[(2s)-3,3-dimethyloxirane-2-carbonyl]-1,1,6-trimethyl-3a-(methylamino)-4,6,7,8,9,9a,10,10a-octahydro-3h-spiro[cyclopenta[b]quinolizine-2,3'-indol]-2'-ol

C28H39N3O3 (465.2991)


   

2-amino-n-[4-amino-3-({3-amino-6-[(ethylamino)methyl]oxan-2-yl}oxy)-2-hydroxy-6-methoxycyclohexyl]-n-methylacetamide; carbonic acid

2-amino-n-[4-amino-3-({3-amino-6-[(ethylamino)methyl]oxan-2-yl}oxy)-2-hydroxy-6-methoxycyclohexyl]-n-methylacetamide; carbonic acid

C19H39N5O8 (465.2798)


   

(2e,4e)-10-[(2r,3s,4r,6r,8r,10s,11s)-4,10-dihydroxy-2,3,11-trimethyl-1-oxaspiro[5.5]undecan-8-yl]-4-ethyl-8-(hydroxymethyl)undeca-2,4-dienimidic acid

(2e,4e)-10-[(2r,3s,4r,6r,8r,10s,11s)-4,10-dihydroxy-2,3,11-trimethyl-1-oxaspiro[5.5]undecan-8-yl]-4-ethyl-8-(hydroxymethyl)undeca-2,4-dienimidic acid

C27H47NO5 (465.3454)


   

(1s,2e,4r,7r,8s,9s,10e,12z,14s,17r,19s,20r)-7,8,19-trihydroxy-2,10-dimethyl-17-[(2e,4e)-octa-2,4-dien-1-yl]-16-azatetracyclo[12.6.0.0⁴,⁹.0¹⁶,²⁰]icosa-2,5,10,12-tetraen-15-one

(1s,2e,4r,7r,8s,9s,10e,12z,14s,17r,19s,20r)-7,8,19-trihydroxy-2,10-dimethyl-17-[(2e,4e)-octa-2,4-dien-1-yl]-16-azatetracyclo[12.6.0.0⁴,⁹.0¹⁶,²⁰]icosa-2,5,10,12-tetraen-15-one

C29H39NO4 (465.2879)


   

(1s,2r,3r,4s,5r,6s,8r,9s,10s,13r,16s,17r,18r)-11-ethyl-9,16,18-trihydroxy-6,8-dimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

(1s,2r,3r,4s,5r,6s,8r,9s,10s,13r,16s,17r,18r)-11-ethyl-9,16,18-trihydroxy-6,8-dimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

(1r,4s,5s,6s,8r,9s,10s,13s,16s,18s)-11-ethyl-8,16-dihydroxy-4,6,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl acetate

(1r,4s,5s,6s,8r,9s,10s,13s,16s,18s)-11-ethyl-8,16-dihydroxy-4,6,18-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl acetate

C25H39NO7 (465.2726)


   

(4s,6s,8s,10s,12s,13e,15e,18s)-18-isocyano-4,6,8,10,12-pentamethoxy-13,15-dimethylnonadeca-1,13,15-triene

(4s,6s,8s,10s,12s,13e,15e,18s)-18-isocyano-4,6,8,10,12-pentamethoxy-13,15-dimethylnonadeca-1,13,15-triene

C27H47NO5 (465.3454)


   

(1s,2r,3r,4s,5r,6s,8r,9r,10s,13s,16s,17r)-11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

(1s,2r,3r,4s,5r,6s,8r,9r,10s,13s,16s,17r)-11-ethyl-8,9,16-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

11-ethyl-8,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

11-ethyl-8,16,18-trihydroxy-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-yl acetate

C25H39NO7 (465.2726)


   

(1s,2r,3s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

(1s,2r,3s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-4-one

C25H39NO7 (465.2726)


   

(6s,9s,14r,17r)-14-ethenyl-9,17-diisopropyl-6-(methoxymethyl)-10,14,17-trimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

(6s,9s,14r,17r)-14-ethenyl-9,17-diisopropyl-6-(methoxymethyl)-10,14,17-trimethyl-2,7,10-triazatetracyclo[9.7.1.0⁴,¹⁹.0¹³,¹⁸]nonadeca-1(18),3,7,11(19),12-pentaen-8-ol

C29H43N3O2 (465.3355)