Exact Mass: 462.082
Exact Mass Matches: 462.082
Found 181 metabolites which its exact mass value is equals to given mass value 462.082
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Luteolin 7-glucuronide
Luteolin 7-glucuronide, also known as cyanidenon-7-O-B-D-glucuronate or luteolin 7-O-beta-D-glucuronopyranoside, is a member of the class of compounds known as flavonoid-7-o-glucuronides. Flavonoid-7-o-glucuronides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to glucuronic acid at the C7-position. Luteolin 7-glucuronide is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Luteolin 7-glucuronide can be found in a number of food items such as globe artichoke, wild carrot, carrot, and lettuce, which makes luteolin 7-glucuronide a potential biomarker for the consumption of these food products. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.
Cefamandole
Cefamandole is only found in individuals that have used or taken this drug. It is a broad-spectrum cephalosporin antibiotic. The clinically used form of cefamandole is the formate ester cefamandole nafate, a prodrug which is administered parenterally. Cefamandole is no longer available in the United States.Like all beta-lactam antibiotics, cefamandole binds to specific penicillin-binding proteins (PBPs) located inside the bacterial cell wall, causing the inhibition of the third and last stage of bacterial cell wall synthesis. Cell lysis is then mediated by bacterial cell wall autolytic enzymes such as autolysins; it is possible that cefamandole interferes with an autolysin inhibitor. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
Rimonabant
Rimonabant is an anorectic anti-obesity drug produced and marketed by Sanofi-Aventis. It is an inverse agonist for the cannabinoid receptor CB1. Its main avenue of effect is reduction in appetite. Rimonabant is the first selective CB1 receptor blocker to be approved for use anywhere in the world. Rimonabant is approved in 38 countries including the E.U., Mexico, and Brazil. It was rejected for approval for use in the United States. This decision was made after a U.S. advisory panel recommended the medicine not be approved because it may increase suicidal thinking and depression. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063387 - Cannabinoid Receptor Antagonists C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D019440 - Anti-Obesity Agents Same as: D05731
Luteolin
Luteolin 7-O-beta-D-glucosiduronic acid is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. It has a role as a metabolite. It is a trihydroxyflavone, a glycosyloxyflavone, a monosaccharide derivative and a luteolin O-glucuronoside. It is a conjugate acid of a luteolin 7-O-beta-D-glucosiduronate and a luteolin 7-O-beta-D-glucosiduronate(2-). Luteolin 7-glucuronide is a natural product found in Galeopsis tetrahit, Galeopsis ladanum, and other organisms with data available. A luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 7-position. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.
Kaempferol 3-glucuronide
Isolated from the leaves of Euphorbia lathyris, Euphorbia cyparissias, Anemone alpina and Phaseolus vulgaris (kidney bean) and many other plants [CCD]. Kaempferol 3-glucuronide is found in many foods, some of which are dill, fennel, strawberry, and green bean. Kaempferol 3-glucuronide is found in chicory. Kaempferol 3-glucuronide is isolated from the leaves of Euphorbia lathyris, Euphorbia cyparissias, Anemone alpina and Phaseolus vulgaris (kidney bean) and many other plants [CCD Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2]. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2].
Luteolin 7-glucuronide
Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.
6-[4-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)-2-hydroxyphenoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
6-{[6,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-5-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
6-{[2-(3,4-dihydroxyphenyl)-7-hydroxy-4-oxo-4H-chromen-5-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
3-Methylellagic acid 8-rhamnoside
3-Methylellagic acid 8-rhamnoside is a constituent of Eucalyptus globulus (Tasmanian blue gum). Constituent of Eucalyptus globulus (Tasmanian blue gum)
6-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-6-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
Oxazepam glucuronide
Oxazepam glucuronide belongs to the family of Glucuronic Acid Derivatives. These are compounds containing a glucuronic acid moeity (or a derivative), which consists of a glucose moiety with the C6 carbon oxidized to a carboxylic acid.
Luteolin 3'-glucuronide
Cefatrizine
Scutellarein 7-glucuronide
luteolin 3-glucuronide
Luteolin 3-O-glucuronide is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 3-position. It has a role as a metabolite. It is a luteolin O-glucuronoside and a trihydroxyflavone. Luteolin 3-o-glucuronide is a natural product found in Salvia, Salvia officinalis, and other organisms with data available. See also: Rosemary (part of). A luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 3-position. Luteolin-3-O-beta-D-glucuronide is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 3'-position. Luteolin-3-O-beta-D-glucuronide is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 3'-position.
Scutellarin
Scutellarin is the glycosyloxyflavone which is the 7-O-glucuronide of scutellarein. It has a role as an antineoplastic agent and a proteasome inhibitor. It is a glycosyloxyflavone, a glucosiduronic acid, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a scutellarein. It is a conjugate acid of a scutellarin(1-). Scutellarin is a natural product found in Scoparia dulcis, Sempervivum ruthenicum, and other organisms with data available. Scutellarin, an active flavone isolated from Scutellaria baicalensis, can down-regulates the STAT3/Girdin/Akt signaling in HCC cells, and inhibits RANKL-mediated MAPK and NF-κB signaling pathway in osteoclasts. Scutellarin is active against HIV-1IIIB, HIV-1(74V) and HIV-1KM018 with EC50s of 26 μM, 253 μM and 136 μM, respectively. Scutellarin, an active flavone isolated from Scutellaria baicalensis, can down-regulates the STAT3/Girdin/Akt signaling in HCC cells, and inhibits RANKL-mediated MAPK and NF-κB signaling pathway in osteoclasts. Scutellarin is active against HIV-1IIIB, HIV-1(74V) and HIV-1KM018 with EC50s of 26 μM, 253 μM and 136 μM, respectively. Scutellarin, an active flavone isolated from Scutellaria baicalensis, can down-regulates the STAT3/Girdin/Akt signaling in HCC cells, and inhibits RANKL-mediated MAPK and NF-κB signaling pathway in osteoclasts. Scutellarin is active against HIV-1IIIB, HIV-1(74V) and HIV-1KM018 with EC50s of 26 μM, 253 μM and 136 μM, respectively.
5,7,8,2-Tetrahydroxyflavone 7-glucuronide
Scutellarein 5-glucuronide
3-mono-O-methylellagic acid 4-O-alpha-L-rhamnopyranoside
Kaempferol 5-glucuronide
3-O-Methylellagic acid 3-O-alpha-L-rhamnopyranoside
Luteolin-3-O-glucuronide
Luteolin-3-O-beta-D-glucuronide is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 3'-position. Luteolin-3-O-beta-D-glucuronide is a luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 3'-position.
Kaempferol 3-glucuronide
Acquisition and generation of the data is financially supported in part by CREST/JST. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2]. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2].
4-O-methylellagic acid 3-alpha-rhamnoside|4-O-Methylellagic acid 3-??-rhamnoside
12R-hydroxy-bromosphaerol|12R-hydroxybromosphaerol
3,4-di-O-methylellagic acid 3-O-beta-D-xylopyranoside
3,3-di-O-methyl ellagic acid-4-O-beta-D-xylopyranoside
5,7,2,5-tetrahydroxyflavone 7-O-beta-D-glucuronopyranoside|5,7,2,5-Tetrahydroxyflavone 7-O-??-D-glucuronopyranoside
3-O-methylellagic acid 4-O-alpha-L-rhamnopyranoside
Isoscutellarein 8-glucuronide
Isoscutellarein 8-glucuronide is a natural product found in Theobroma grandiflorum, Lavandula coronopifolia, and other organisms with data available. See also: Theobroma grandiflorum seed (part of).
Kaempferol 3-O-β-D-glucuronide
Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2]. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2].
Kaempferol-3-Glucuronide
Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2]. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2].
(2S,3S,4S,5R,6S)-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid
(2S,3S,4S,5R,6S)-6-[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid
kaempferol-3-o-glucuronide
Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2]. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2].
Kaempferol glucuronide
Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2]. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2].
Kaempferol 3-O-glucuronide
A kaempferol O-glucuronide that is kaempferol with a beta-D-glucosiduronic acid residue attached at the 3-position. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2]. Kaempferol 3-O-β-D-glucuronide (Kaempferol-3-glucuronide), one conjugated kaempferol metabolite, has anti-inflammatory effect. Kaempferol 3-O-β-D-glucuronide significantly inhibits various pro-inflammatory mediators like IL-1β, NO, PGE2, and LTB4. Kaempferol 3-O-β-D-glucuronide upregulates the secretion of anti-inflammatory cytokine IL-10[1][2].
Luteolin 7-O-glucuronide
Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively. Luteolin 7-O-glucuronide could inhibit Matrix Metalloproteinases (MMP) activities, with IC50s of 17.63, 7.99, 11.42, 12.85, 0.03 μM for MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, respectively.
Cefatrizine
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DB - First-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
(2S,3S,4S,5R,6S)-6-[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid
3-Methylellagic acid 8-rhamnoside
[4-[(Z)-[3-(2-aminoethyl)-2,4-dioxo-1,3-thiazolidin-5-ylidene]methyl]-2-methoxyphenyl] 2,5-dimethylbenzenesulfonate
Rimonabant
A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063387 - Cannabinoid Receptor Antagonists C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D019440 - Anti-Obesity Agents Same as: D05731
Breviscapin
Scutellarin, an active flavone isolated from Scutellaria baicalensis, can down-regulates the STAT3/Girdin/Akt signaling in HCC cells, and inhibits RANKL-mediated MAPK and NF-κB signaling pathway in osteoclasts. Scutellarin is active against HIV-1IIIB, HIV-1(74V) and HIV-1KM018 with EC50s of 26 μM, 253 μM and 136 μM, respectively. Scutellarin, an active flavone isolated from Scutellaria baicalensis, can down-regulates the STAT3/Girdin/Akt signaling in HCC cells, and inhibits RANKL-mediated MAPK and NF-κB signaling pathway in osteoclasts. Scutellarin is active against HIV-1IIIB, HIV-1(74V) and HIV-1KM018 with EC50s of 26 μM, 253 μM and 136 μM, respectively. Scutellarin, an active flavone isolated from Scutellaria baicalensis, can down-regulates the STAT3/Girdin/Akt signaling in HCC cells, and inhibits RANKL-mediated MAPK and NF-κB signaling pathway in osteoclasts. Scutellarin is active against HIV-1IIIB, HIV-1(74V) and HIV-1KM018 with EC50s of 26 μM, 253 μM and 136 μM, respectively.
luteolin 5-O-glucuronide
A luteolin glucosiduronic acid consisting of luteolin having a beta-D-glucosiduronic acid residue attached at the 5-position.
kaempferol 7-O-glucuronide
A kaempferol O-glucuronide that is kaempferol with a beta-D-glucosiduronic acid residue attached at the 7-position.
kaempferol 5-O-glucuronide
A kaempferol O-glucuronide that is kaempferol with a beta-D-glucosiduronic acid residue attached at the 5-position.
3-(2-chlorophenyl)-6-[3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl]-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine
1-[4-[2-(4-Bromophenoxy)-1-oxoethyl]-1-piperazinyl]-2-(4-methoxyphenoxy)ethanone
N-[4-[(2,6-difluorophenyl)sulfonylamino]butyl]-2,3-dihydro-1,4-benzodioxin-6-sulfonamide
3-L-aspartyl-AMP
An L-aspartic acid derivative that is the ester obtained by formal condensation of the alpha-carboxy group of L-aspartic acid with the 3-hydroxy group of AMP.
6-[1-oxo-2-[[4-(phenylmethyl)-5-thiophen-2-yl-1,2,4-triazol-3-yl]thio]ethyl]-4H-1,4-benzoxazin-3-one
2-acetamido-2-deoxy-3-O-(6-O-sulfonato-beta-D-glucosyl)-beta-D-galactose
(2S,3S,4S,5R)-6-[(7-Chloro-2-oxo-5-phenyl-1,3-dihydro-1,4-benzodiazepin-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
(2S)-2-[[2-amino-9-[(2R,4S,5R)-4-hydroxy-5-(phosphonooxymethyl)oxolan-2-yl]purin-6-yl]amino]butanedioic acid
Cefamandole
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams A cephalosporin compound having (R)-mandelamido and N-methylthiotetrazole side-groups. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic
MDM2-IN-1
MDM2-IN-1 (Compound 30) is a synthetic MDM2-p53 interaction (MDM2) inhibitor and contains the trans (D-)configuration[1].
6-hydroxy-7,14-dimethoxy-13-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione
14-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-7-hydroxy-6,13-dimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione
(1s,3s,4bs,5r,8s,8as,10as)-8-bromo-10a-(bromomethyl)-1-isopropyl-5,8a-dimethyl-2,3,4b,6,7,8,9,10-octahydro-1h-phenanthrene-3,5-diol
6-[5-(5,7-dihydroxy-4-oxochromen-2-yl)-2-hydroxyphenoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
(2s,3s,4s,5r,6s)-6-{[5,8-dihydroxy-2-(2-hydroxyphenyl)-4-oxochromen-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxochromen-7-yl 3,4,5,6-tetrahydroxyoxane-2-carboxylate
(1r,3s,4'as,5's,7'r,8's,8'as)-3,5'-dibromo-2,2,4'a,8'-tetramethyl-6-methylidene-hexahydro-1'h-spiro[cyclohexane-1,2'-naphthalene]-7',8'-diol
7,13-dihydroxy-6-methoxy-14-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione
(1s,3s,4s,4as,4bs,8s,8as,10as)-1-bromo-8a-(bromomethyl)-8-isopropyl-4,10a-dimethyl-2,3,4a,4b,7,8,9,10-octahydro-1h-phenanthrene-3,4-diol
2-bromo-4-[(4e)-5-(5-bromo-2,6,6-trimethyloxan-2-yl)penta-2,4-dien-2-yl]-1-methylcyclohexan-1-ol
6-hydroxy-7,14-dimethoxy-13-{[(2r,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione
2-bromo-4-[(3e)-4-(3-bromo-2,2-dimethyl-6-methylidenecyclohexyl)-2-hydroxybut-3-en-2-yl]-1-methylcyclohexan-1-ol
(1s,3s)-3,5'-dibromo-2,2,4'a,8'-tetramethyl-6-methylidene-hexahydro-1'h-spiro[cyclohexane-1,2'-naphthalene]-7',8'-diol
13-hydroxy-6,14-dimethoxy-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione
6-hydroxy-7,14-dimethoxy-13-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione
14-{[(2r,3s,4r,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-7-hydroxy-6,13-dimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione
3-o-methylellagicacid3'-o-α-l-rhamnopyranoside
{"Ingredient_id": "HBIN009348","Ingredient_name": "3-o-methylellagicacid3'-o-\u03b1-l-rhamnopyranoside","Alias": "NA","Ingredient_formula": "C21H18O12","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "14336","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-o-methylellagic acid 3'-o-alpha-rhamnopyranoside
{"Ingredient_id": "HBIN009349","Ingredient_name": "3-o-methylellagic acid 3'-o-alpha-rhamnopyranoside","Alias": "NA","Ingredient_formula": "C21H18O12","Ingredient_Smile": "CC1C(C(C(C(O1)OC2=C(C=C3C4=C2OC(=O)C5=CC(=C(C(=C54)OC3=O)OC)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "31601","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-o-methylellagicacid4-o-α-l-rhamnopyranoside
{"Ingredient_id": "HBIN009351","Ingredient_name": "3-o-methylellagicacid4-o-\u03b1-l-rhamnopyranoside","Alias": "NA","Ingredient_formula": "C21H18O12","Ingredient_Smile": "CC1C(C(C(C(O1)OC2=C(C3=C4C(=C2)C(=O)OC5=C4C(=CC(=C5OC)O)C(=O)O3)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "14337","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-o-methylellagicacid4'-o-α-l-rhamnopyranoside
{"Ingredient_id": "HBIN009352","Ingredient_name": "3-o-methylellagicacid4'-o-\u03b1-l-rhamnopyranoside","Alias": "NA","Ingredient_formula": "C21H18O12","Ingredient_Smile": "CC1C(C(C(C(O1)OC2=C(C3=C4C(=C2)C(=O)OC5=C4C(=CC(=C5OC)O)C(=O)O3)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "14338","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
4-o-methylellagicacid 3'-α-rhamnoside
{"Ingredient_id": "HBIN010781","Ingredient_name": "4-o-methylellagicacid 3'-\u03b1-rhamnoside","Alias": "NA","Ingredient_formula": "C21H18O12","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "14339","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
5,6,4'-trihydroxyflavone-7-o-beta-d-galactonic acid
{"Ingredient_id": "HBIN011088","Ingredient_name": "5,6,4'-trihydroxyflavone-7-o-beta-d-galactonic acid","Alias": "5,6,4'-trihydroxyflavone-7-o-\u03b2-d-galactonicacid","Ingredient_formula": "C21H18O12","Ingredient_Smile": "C1=CC(=CC=C1C2=CC(=O)C3=C(C(=C(C=C3O2)OC4C(C(C(C(O4)C(=O)O)O)O)O)O)O)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "32121;21719","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
5,7,2',5'-tetrahydroxyflavone7-o-β-d-glucuronopyranoside
{"Ingredient_id": "HBIN011165","Ingredient_name": "5,7,2',5'-tetrahydroxyflavone7-o-\u03b2-d-glucuronopyranoside","Alias": "NA","Ingredient_formula": "C21H18O12","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "21099","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}