Exact Mass: 441.2661
Exact Mass Matches: 441.2661
Found 388 metabolites which its exact mass value is equals to given mass value 441.2661
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Leukotriene E3
Leukotriene E3 is an eicosanoid derived from 8,11,14-Eicosatrienoic acid by the 5-Lipoxygenase-Leukotriene Pathway. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. Leukotriene E3 is also a by-product of the metabolism of leukotriene C3. Although they are primarily known for their roles in asthma, pain, fever and vascular responses, present evidence indicates that eicosanoids exert relevant effects on immune/inflammatory, as well as structural, cells pertinent to fibrogenesis. (PMID: 7306127, 8142566, 16574479, 15896193)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene E3 is an eicosanoid derived from 8,11,14-Eicosatrienoic acid by the 5-Lipoxygenase-Leukotriene Pathway. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. Leukotriene E3 is also a by-product of the metabolism of leukotriene C3. Although they are primarily known for their roles in asthma, pain, fever and vascular responses, present evidence indicates that eicosanoids exert relevant effects on immune/inflammatory, as well as structural, cells pertinent to fibrogenesis. (PMID: 7306127, 8142566, 16574479, 15896193)
Vilazodone
Vilazodone is a novel compound with combined high affinity and selectivity for the 5-hydroxytryptamine (5-HT) transporter and 5-HT(1A) receptors. It has been shown to be equally efficacious as other antidepressants with similar gastrointestinal side effects and possibly with reduced sexual side effects and weight gain. Vilazodone is an antidepressant agent that can used as an alternative for patients who cannot tolerate therapy with other antidepressant classes such as selective serotonin reuptake inhibitors or serotonin norepinephrine reuptake inhibitors. Treatment should be titrated towards the target dose, which is 40mg per day. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators Vilazodone (EMD 68843; SB 659746A) is a potent, selective and orally active?serotonin?reuptake inhibitor (SSRI) and partial?5-HT1A receptor agonist. Vilazodone exhibits antidepressant efficacy in vivo can be used for the research of major depressive disorder (MDD) and affective disorders[1][2].
N-Arachidonoyl Histidine
N-arachidonoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Arachidonic acid amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Arachidonoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Arachidonoyl Histidine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
3-N-(2-Fluoroethyl)spiperone
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D019275 - Radiopharmaceuticals
Pentanoic acid, 5-(dipentylamino)-5-oxo-4-((3-quinolinylcarbonyl)amino)-, (R)-
Cerivastatin lactone
4-(2-((4-(2-(Pyridin-2-yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)quinolin-7-yl)oxy)ethyl)morpholine
(13R)-11alpha-acetoxy-2alpha-hydroxy-13-isobutyryloxyhetisane|trichodelphinine A
(S,S)-ciliatamide A|ciliatamide A|N-methyl-((S)-azepan-2-one-3-ylamino-(S)-oxo-3-phenylpropan-2-yl)dec-9-enamide
Ser His Ala Lys
Ala His Lys Ser
Ala His Ser Lys
Ala Lys His Ser
Ala Lys Ser His
Mebeverine metabolite (1-Butanol, 4-[ethyl[2-(4-methoxyphenyl)-1-methylethyl]amino]- glucuronide)
Ala Pro Arg Val
Ala Pro Val Arg
Ala Arg Pro Val
Ala Arg Val Pro
Ala Ser His Lys
Ala Ser Lys His
Ala Val Pro Arg
Ala Val Arg Pro
Gly His Lys Thr
Gly His Thr Lys
Gly Ile Pro Arg
Gly Ile Arg Pro
Gly Lys His Thr
Gly Lys Thr His
Gly Leu Pro Arg
Gly Leu Arg Pro
Gly Pro Ile Arg
Gly Pro Leu Arg
Gly Pro Arg Ile
Gly Pro Arg Leu
Gly Arg Ile Pro
Gly Arg Leu Pro
Gly Arg Pro Ile
Gly Arg Pro Leu
Gly Thr His Lys
Gly Thr Lys His
His Ala Lys Ser
His Ala Ser Lys
His Gly Lys Thr
His Gly Thr Lys
His Lys Ala Ser
His Lys Gly Thr
His Lys Ser Ala
His Lys Thr Gly
His Ser Ala Lys
His Ser Lys Ala
His Thr Gly Lys
His Thr Lys Gly
Ile Gly Pro Arg
Ile Gly Arg Pro
Ile Asn Pro Val
Ile Asn Val Pro
Ile Pro Gly Arg
Ile Pro Asn Val
Ile Pro Arg Gly
Ile Pro Val Asn
Ile Arg Gly Pro
Ile Arg Pro Gly
Ile Val Asn Pro
Ile Val Pro Asn
Lys Ala His Ser
Lys Ala Ser His
Lys Gly His Thr
Lys Gly Thr His
Lys His Ala Ser
Lys His Gly Thr
Lys His Ser Ala
Lys His Thr Gly
Lys Pro Pro Thr
Lys Pro Thr Pro
Lys Pro Val Val
Lys Ser Ala His
Lys Ser His Ala
Lys Thr Gly His
Lys Thr His Gly
Lys Thr Pro Pro
Lys Val Pro Val
Lys Val Val Pro
Leu Gly Pro Arg
Leu Gly Arg Pro
Leu Asn Pro Val
Leu Asn Val Pro
Leu Pro Gly Arg
Leu Pro Asn Val
Leu Pro Arg Gly
Leu Pro Val Asn
Leu Arg Gly Pro
Leu Arg Pro Gly
Leu Val Asn Pro
Leu Val Pro Asn
Asn Ile Pro Val
Asn Ile Val Pro
Asn Leu Pro Val
Asn Leu Val Pro
Asn Pro Ile Val
Asn Pro Leu Val
Asn Pro Val Ile
Asn Pro Val Leu
Asn Val Ile Pro
Asn Val Leu Pro
Asn Val Pro Ile
Asn Val Pro Leu
Pro Ala Arg Val
Pro Ala Val Arg
Pro Gly Ile Arg
Pro Gly Leu Arg
Pro Gly Arg Ile
Pro Gly Arg Leu
Pro Ile Gly Arg
Pro Ile Asn Val
Pro Ile Arg Gly
Pro Ile Val Asn
Pro Lys Pro Thr
Pro Lys Thr Pro
Pro Lys Val Val
Pro Leu Gly Arg
Pro Leu Asn Val
Pro Leu Arg Gly
Pro Leu Val Asn
Pro Asn Ile Val
Pro Asn Leu Val
Pro Asn Val Ile
Pro Asn Val Leu
Pro Pro Lys Thr
Pro Pro Gln Thr
Pro Pro Thr Lys
Pro Pro Thr Gln
Pro Gln Pro Thr
Pro Gln Thr Pro
Pro Gln Val Val
Pro Arg Ala Val
Pro Arg Gly Ile
Pro Arg Gly Leu
Pro Arg Ile Gly
Pro Arg Leu Gly
Pro Arg Val Ala
Pro Thr Lys Pro
Pro Thr Pro Lys
Pro Thr Pro Gln
Pro Thr Gln Pro
Pro Val Ala Arg
Pro Val Ile Asn
Pro Val Lys Val
Pro Val Leu Asn
Pro Val Asn Ile
Pro Val Asn Leu
Pro Val Gln Val
Pro Val Arg Ala
Pro Val Val Lys
Pro Val Val Gln
Gln Pro Pro Thr
Gln Pro Thr Pro
Gln Pro Val Val
Gln Thr Pro Pro
Gln Val Pro Val
Gln Val Val Pro
Arg Ala Pro Val
Arg Ala Val Pro
Arg Gly Ile Pro
Arg Gly Leu Pro
Arg Gly Pro Ile
Arg Gly Pro Leu
Arg Ile Gly Pro
Arg Ile Pro Gly
Arg Leu Gly Pro
Arg Leu Pro Gly
Arg Pro Ala Val
Arg Pro Gly Ile
Arg Pro Gly Leu
Arg Pro Ile Gly
Arg Pro Leu Gly
Arg Pro Val Ala
Arg Val Ala Pro
Arg Val Pro Ala
Ser Ala His Lys
Ser Ala Lys His
Ser His Lys Ala
Ser Lys Ala His
Ser Lys His Ala
Thr Gly His Lys
Thr Gly Lys His
Thr His Gly Lys
Thr His Lys Gly
Thr Lys Gly His
Thr Lys His Gly
Thr Lys Pro Pro
Thr Pro Lys Pro
Thr Pro Pro Lys
Thr Pro Pro Gln
Thr Pro Gln Pro
Thr Gln Pro Pro
Val Ala Pro Arg
Val Ala Arg Pro
Val Ile Asn Pro
Val Ile Pro Asn
Val Lys Pro Val
Val Lys Val Pro
Val Leu Asn Pro
Val Leu Pro Asn
Val Asn Ile Pro
Val Asn Leu Pro
Val Asn Pro Ile
Val Asn Pro Leu
Val Pro Ala Arg
Val Pro Ile Asn
Val Pro Lys Val
Val Pro Leu Asn
Val Pro Asn Ile
Val Pro Asn Leu
Val Pro Gln Val
Val Pro Arg Ala
Val Pro Val Lys
Val Pro Val Gln
Val Gln Pro Val
Val Gln Val Pro
Val Arg Ala Pro
Val Arg Pro Ala
Val Val Lys Pro
Val Val Pro Lys
Val Val Pro Gln
Val Val Gln Pro
Leukotriene E3
A leukotriene that is leukotriene E4 in which the non-conjugated double bond has been reduced to a single bond.
cyclopropyl methyl amide
Vilazodone
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators Vilazodone (EMD 68843; SB 659746A) is a potent, selective and orally active?serotonin?reuptake inhibitor (SSRI) and partial?5-HT1A receptor agonist. Vilazodone exhibits antidepressant efficacy in vivo can be used for the research of major depressive disorder (MDD) and affective disorders[1][2].
[1,1-Bis(hydroxymethyl)-3-(4-octylphenyl)propyl]carbamic acid Phenylmethyl Ester
PHENOL, 2-(2H-BENZOTRIAZOL-2-YL)-6-(1-METHYL-1-PHENYLETHYL)-4-(1,1,3,3-TETRAMETHYLBUTYL)-
LY2109761
2-(dimethylamino)ethyl 2-methylprop-2-enoate,2-ethylhexyl prop-2-enoate,methyl 2-methylprop-2-enoate
6-[2-[4-(4-fluorophenyl)-5-(methoxymethyl)-2,6-di(propan-2-yl)pyridin-3-yl]ethenyl]-4-hydroxyoxan-2-one
3-Hydroxy-piperidine-1-carboxylic acid tert-butyl ester
Ciliatamide A
A lipopeptide that contains N-methylphenylalanine and lysine as the amino acid residues linked to a dec-9-enoyl moiety via an amide linkage (the R,R stereoisomer). It is isolated from the deep sea sponge Aaptos ciliata and exhibits antileishmanial activity.
Bisoprolol monofumarate
D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013565 - Sympatholytics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents
5-Methyl-3-(9-oxo-1,8-diaza-tricyclo[10.6.1.013,18]nonadeca-12(19),13,15,17-tetraen-10-ylcarbamoyl)-hexanoic acid
N-(4-Morpholine)carbonyl-B-(1-naphthyl)-L-alanine-L-leucine boronic acid
Lisinopril diydrate
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents
6-[2-[4-(4-Fluorophenyl)-2,6-diisopropyl-5-(methoxymethyl)-3-pyridyl]vinyl]-4-hydroxy-tetrahydropyran-2-one
2-[[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]amino]-3-(1H-imidazol-5-yl)propanoic acid
Lys-Thr-Pro-Pro
A tetrapeptide composed of L-lysine, L-threonine and two L-proline units joined in sequence by peptide linkages.
3alpha,7alpha-Dihydroxy-5beta-cholane-24-sulfonate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids