Leukotriene E3 (BioDeep_00000025498)

   

human metabolite Endogenous


代谢物信息卡片


[5S-[5R*,6S*(s*),7E,9E,11Z]]-6-[(2-amino-2-carboxyethyl)thio]-5-hydroxy-7,9,11-eicosatrienoic acid

化学式: C23H39NO5S (441.25488040000005)
中文名称:
谱图信息: 最多检出来源 Mentha canadensis(plant) 2.94%

分子结构信息

SMILES: CCCCCCCCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)O)N
InChI: InChI=1S/C23H39NO5S/c1-2-3-4-5-6-7-8-9-10-11-12-13-16-21(30-18-19(24)23(28)29)20(25)15-14-17-22(26)27/h9-13,16,19-21,25H,2-8,14-15,17-18,24H2,1H3,(H,26,27)(H,28,29)/b10-9-,12-11+,16-13+/t19-,20-,21+/m0/s1

描述信息

Leukotriene E3 is an eicosanoid derived from 8,11,14-Eicosatrienoic acid by the 5-Lipoxygenase-Leukotriene Pathway. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. Leukotriene E3 is also a by-product of the metabolism of leukotriene C3. Although they are primarily known for their roles in asthma, pain, fever and vascular responses, present evidence indicates that eicosanoids exert relevant effects on immune/inflammatory, as well as structural, cells pertinent to fibrogenesis. (PMID: 7306127, 8142566, 16574479, 15896193)Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Leukotriene E3 is an eicosanoid derived from 8,11,14-Eicosatrienoic acid by the 5-Lipoxygenase-Leukotriene Pathway. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. Taken together, these findings indicate that the enzymatic conversion of eicosatrienoic acid to specific signaling molecules can occur in the nucleus, that it is regulated, and that the synthesized products may act within the nucleus. Leukotriene E3 is also a by-product of the metabolism of leukotriene C3. Although they are primarily known for their roles in asthma, pain, fever and vascular responses, present evidence indicates that eicosanoids exert relevant effects on immune/inflammatory, as well as structural, cells pertinent to fibrogenesis. (PMID: 7306127, 8142566, 16574479, 15896193)

同义名列表

9 个代谢物同义名

[5S-[5R*,6S*(s*),7E,9E,11Z]]-6-[(2-amino-2-carboxyethyl)thio]-5-hydroxy-7,9,11-eicosatrienoic acid; (5S,6R,7E,9E,11Z)-6-{[(2R)-2-amino-2-carboxyethyl]sulfanyl}-5-hydroxyicosa-7,9,11-trienoic acid; [5S-[5R*,6S*(s*),7E,9E,11Z]]-6-[(2-amino-2-carboxyethyl)thio]-5-hydroxy-7,9,11-eicosatrienoate; (5S,6R,7E,9E,11Z)-6-[[(2R)-2-Amino-2-carboxyethyl]thio]-5-hydroxy-7,9,11-eicosatrienoic acid; (5S,6R,7E,9E,11Z)-6-[[(2R)-2-Amino-2-carboxyethyl]thio]-5-hydroxy-7,9,11-eicosatrienoate; 14,15-Dihydro-leukotriene e4; 14,15-Dihydro-lte4; Leukotriene E3; LTE3



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表