Exact Mass: 418.12455919999996
Exact Mass Matches: 418.12455919999996
Found 166 metabolites which its exact mass value is equals to given mass value 418.12455919999996
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). Liquiritin is found in herbs and spices. Liquiritin is isolated from Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
Aloin
C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D005765 - Gastrointestinal Agents > D002400 - Cathartics Aloin A is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Barbaloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9S diastereoisomer). Aloin B is a C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). It has a role as a metabolite and a laxative. It is a C-glycosyl compound, a member of anthracenes, a cyclic ketone and a member of phenols. Aloin is a natural product found in Aloe africana, Aloe castanea, and other organisms with data available. See also: Aloe Vera Leaf (part of); Frangula purshiana Bark (part of). A C-glycosyl compound that is beta-D-glucopyranose in which the anomeric hydroxy group is replaced by a 4,5-dihydroxy-2-(hydroxymethyl)-10-oxo-9,10-dihydroanthracen-9-yl moiety (the 9R diastereoisomer). IPB_RECORD: 1881; CONFIDENCE confident structure Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin B is an isomer of aloin, a physiologically active anthraquinone compound in aloe. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].
Aloin
Aloin is a constituent of various Aloe species Aloin extracted from natural sources is a mixture of two diastereomers, termed aloin A (also called barbaloin) and aloin B (or isobarbaloin), which have similar chemical properties. Aloin is an anthraquinone glycoside, meaning that its anthraquinone skeleton has been modified by the addition of a sugar molecule. Anthraquinones are a common family of naturally occurring yellow, orange, and red pigments of which many have cathartic properties, attributes shared by aloin. Aloin is related to aloe emodin, which lacks a sugar group but shares aloins biological properties. Aloin, also known as Barbaloin [Reynolds, Aloes - The genus Aloe, 2004], is a bitter, yellow-brown colored compound noted in the exudate of at least 68 Aloe species at levels from 0.1 to 6.6\\\\\% of leaf dry weight (making between 3\\\\\% and 35\\\\\% of the toal exudate) (Groom & Reynolds, 1987), and in another 17 species at indeterminate levels [Reynolds, 1995b]. It is used as a stimulant-laxative, treating constipation by inducing bowel movements. The compound is present in what is commonly referred to as the aloe latex that exudes from cells adjacent to the vascular bundles, found under the rind of the leaf and in between it and the gel. When dried, it has been used as a bittering agent in commerce (alcoholic beverages) [21 CFR 172.510. Scientific names given include Aloe perryi, A. barbadensis (= A. vera), A. ferox, and hybrids of A. ferox with A. africana and A. spicata.]. Aloe is listed in federal regulations as a natural substance that may be safely used in food when used in the minimum quantity required to produce their intended physical or technical effect and in accordance with all the principles of good manufacturing practice. This food application is generally limited to use in quite small quantities as a flavoring in alcoholic beverages and may usually be identified only as a natural flavor. ; In May 2002, the U.S. Aloin is a food and Drug Administration (FDA) issued a ruling that aloe laxatives are no longer generally recognized as safe (GRAS) and effective, meaning that aloin-containing products are no longer available in over-the-counter drug products in the United States. Aloe vera leaf latex is a concentrate of an herb or other botanical, and so meets the statutory description of an ingredient that may be used in dietary supplements Aloin A is a natural product found in Aloe arborescens with data available. D005765 - Gastrointestinal Agents > D002400 - Cathartics Constituent of various Aloe subspecies CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1 INTERNAL_ID 1; CONFIDENCE Reference Standard (Level 1) Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].
Polygonimitin B
A xanthone glycoside that is 9H-xanthene substituted by a hydroxy group at position 3, methyl groups at positions 6 and 7, an oxo group at position 9 and a beta-D-glucopyranosyloxy group at position 1.
5-Hydroxy-3,3',4',6,7,8-hexamethoxyflavone
5-Hydroxy-3,3,4,6,7,8-hexamethoxyflavone is a member of flavonoids and an ether. 5-Hydroxy-3,6,7,8,3,4-hexamethoxyflavone is a natural product found in Maclurodendron porteri, Polanisia trachysperma, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). 5-Hydroxy-3,3,4,6,7,8-hexamethoxyflavone is found in citrus. 5-Hydroxy-3,3,4,6,7,8-hexamethoxyflavone is isolated from peel of orange (Citrus sinensis Isolated from peel of orange (Citrus sinensis). 5-Hydroxy-3,3,4,6,7,8-hexamethoxyflavone is found in sweet orange and citrus.
Neoliquiritin
Neoliquiritin is found in herbs and spices. Neoliquiritin is isolated from Glycyrrhiza uralensis (Chinese licorice). Isolated from Glycyrrhiza uralensis (Chinese licorice). Neoliquiritin is found in herbs and spices. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
Naringenin 5-rhamnoside
Naringenin 5-rhamnoside is found in fruits. Naringenin 5-rhamnoside is isolated from Prunus cerasoides (wild Himalayan cherry). Isolated from Prunus cerasoides (wild Himalayan cherry). Naringenin 5-rhamnoside is found in fruits.
Neoisoliquiritin
Isolated from Glycyrrhiza glabra (licorice), Cicer arietinum (chickpea) and Glycine max (soybean). Neoisoliquiritin is found in many foods, some of which are pulses, chickpea, soy bean, and tea. Neoisoliquiritin is found in chickpea. Neoisoliquiritin is isolated from Glycyrrhiza glabra (licorice), Cicer arietinum (chickpea) and Glycine max (soybean). Neoisoliquiritin is a bioactive component isolated from Glycyrrhiza uralensis[1]. Neoisoliquiritin is a bioactive component isolated from Glycyrrhiza uralensis[1].
Isosakuranetin 7-xyloside
Isosakuranetin 7-xyloside is found in fruits. Isosakuranetin 7-xyloside is isolated from Prunus cerasoides (wild Himalayan cherry). Isolated from Prunus cerasoides (wild Himalayan cherry). Isosakuranetin 7-xyloside is found in fruits.
Natsudaidain
Natsudaidain is a polyphenol compound found in foods of plant origin (PMID: 20428313)
Dihydrodaidzin
Constituent of Glycine max (soybeans). Dihydrodaidzin is found in many foods, some of which are tea, fats and oils, soy bean, and pulses. Dihydrodaidzin is found in fats and oils. Dihydrodaidzin is a constituent of Glycine max (soybeans).
6-Hydroxy-3,3',4',5,7,8-hexamethoxyflavone
6-Hydroxy-3,3,4,5,7,8-hexamethoxyflavone is found in citrus. 6-Hydroxy-3,3,4,5,7,8-hexamethoxyflavone is a constituent of satsuma orange Citrus unshiu. Constituent of satsuma orange Citrus unshiu. 6-Hydroxyhexamethylgossypetin is found in citrus.
7-Hydroxy-3,3',4',5,6,8-hexamethoxyflavone
7-Hydroxy-3,3,4,5,6,8-hexamethoxyflavone is found in citrus. 7-Hydroxy-3,3,4,5,6,8-hexamethoxyflavone is a constituent of the peel of tangerine (Citrus sp.). Constituent of the peel of tangerine (Citrus species). 7-Hydroxy-3,3,4,5,6,8-hexamethoxyflavone is found in sweet orange and citrus.
2-Hydroxy-3-methyl-4H-pyran-4-one O-(6E-cinnamoyl-b-D-glucoside)
2-Hydroxy-3-methyl-4H-pyran-4-one O-(6E-cinnamoyl-b-D-glucoside) is found in green vegetables. 2-Hydroxy-3-methyl-4H-pyran-4-one O-(6E-cinnamoyl-b-D-glucoside) is a constituent of the shoots of Silene vulgaris (bladder campion). Constituent of the shoots of Silene vulgaris (bladder campion). 2-Hydroxy-3-methyl-4H-pyran-4-one O-(6E-cinnamoyl-b-D-glucoside) is found in green vegetables.
Gaylussacin
Gaylussacin is found in black huckleberry. Gaylussacin is a constituent of the leaves of Gaylussacia baccata (black huckleberry) and Gaylussacia frondosa (dangleberry). Constituent of the leaves of Gaylussacia baccata (black huckleberry) and Gaylussacia frondosa (dangleberry). Gaylussacin is found in black huckleberry and fruits.
Equol 4'-O-glucuronide
Equol 4-O-glucuronide is a polyphenol metabolite detected in biological fluids (PMID: 20428313).
Equol 7-O-glucuronide
Equol 7-O-glucuronide is a polyphenol metabolite detected in biological fluids (PMID: 20428313).
Fenoprofen glucuronide
Fenoprofen glucuronide is a metabolite of fenoprofen. Fenoprofen is a non-steroidal anti-inflammatory drug. Fenoprofen calcium is used for symptomatic relief for rheumatoid arthritis, osteoarthritis, and mild to moderate pain. Fenoprofen is marketed in the USA as Nalfon. (Wikipedia)
1-(2,4-Dihydroxyphenyl)-3-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-en-1-one
Liquiritin
Neoliquiritin is a glycoside and a member of flavonoids. Neoliquiritin is a natural product found in Glycyrrhiza glabra and Glycyrrhiza uralensis with data available. See also: Glycyrrhiza Glabra (part of). Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
Pinocembroside
Pinocembrin-7-O-D-glucoside is a natural product found in Enkianthus nudipes, Loranthus kaoi, and other organisms with data available. Pinocembrin-7-O-β-D-glucopyranoside (Pinocembrin 7-O-β-D-Glucoside) is is a flavanone that enhances lipid peroxidation[1]. Pinocembrin-7-O-β-D-glucopyranoside (Pinocembrin 7-O-β-D-Glucoside) is is a flavanone that enhances lipid peroxidation[1].
Aervanone
9beta-Acetoxy-11beta,13-epoxyatripliciolide-8-O-methacrylate
5-Hydroxy-3,6,7,3,4,5-hexamethoxyflavone
5-Hydroxy-3,6,7,2,4,5-hexamethoxyflavone
8-Hydroxy-3,5,7,3,4,5-hexamethoxyflavone
5-Hydroxy-3,3,4,5,7,8-hexamethoxyflavone
5-Hydroxy-3,7,2,3,4,6-hexamethoxyflavone
6-Hydroxy-2,3,4,5,2-pentamethoxy-3,4-methylenedioxychalcone
5-Hydroxy-3,6,7,8,34-hexamethoxyflavone
7-Hydroxy-3,5,6,8,3,4-hexamethoxyflavone
Isoliquiritin
Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). A flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.697 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.694 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.693 Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
neoisoliquiritin
Neoisoliquiritin is a bioactive component isolated from Glycyrrhiza uralensis[1]. Neoisoliquiritin is a bioactive component isolated from Glycyrrhiza uralensis[1].
[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 2,4-dihydroxy-6-[(E)-2-phenylethenyl]benzoate
Gaylussacin
p-hydroxyphenyl 2-O-cis-coumaroyl-beta-D-glucopyranoside
(-)-3-(4-O-beta-glucopyranosyloxybenzyl)-7-hydroxyphthalide|scorzoveratrin 4-O-beta-D-glucoside
(2S,10R,3S,4S,6S)-4-deacetyl-griseusin B methyl ester
eleutherinol-8-O-beta-D-glucoside|eleutherinoside A
8alpha-(4-hydroxymethacryloyloxy)-3-oxo-1-desoxy-1,2-dehydrohirsutinolide-13-O-acetate
1-[(4-O-(E)-p-coumaroyl)-beta-D-glucopyranosyl]oxy-2-phenol
8alpha-hydroxy-3beta-(benzoyloxy)-1alphaH,5alphaH,6betaH,7alphaH-guai-4(15),10(14),11(13)-trien-6,12-olide
O-Glucoside-1,8-Dihydroxy-3-(hydromethyl)-9(10H)-anthracenone
2-hydroxy-2,3,4,5,6-pentamethoxy-4,5-methylenedioxychalcone
1-{4-{[6-O-(4-hydroxybenzoyl)-beta-D-glucopyranosyl]oxy}phenyl}ethanone|4-acetylphenyl 6-O-(4-hydroxybenzoyl)-beta-D-glucopyranoside|4-acetylphenyl beta-D-glucopyranoside 6-(4-hydroxybenzoate)|scolochinenoside B
5-hydroxy-7-methoxy-2-(2,3,4,5,6-pentamethoxyphenyl)chromen-4-one
1-[(6-O-(E)-p-coumaroyl)-beta-D-glucopyranosyl]oxy-2-phenol
3TQG647UAN
Neoisoliquiritin is a member of flavonoids and a glycoside. Neoisoliquiritin is a natural product found in Spatholobus suberectus with data available. See also: Glycyrrhiza Glabra (part of). Neoisoliquiritin is a bioactive component isolated from Glycyrrhiza uralensis[1]. Neoisoliquiritin is a bioactive component isolated from Glycyrrhiza uralensis[1].
8-Hydroxy-3,5,6,7,34hexamethoxyflavone
8-Hydroxy-3,5,6,7,3,4-hexamethoxyflavone is a natural product found in Citrus deliciosa and Citrus reticulata with data available.
Gardenin
Gardenin A is a natural product found in Gardenia resinifera, Tamarix dioica, and Murraya paniculata with data available.
5-hydroxy-3,6,7-trimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one
2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydrochromen-4-one
7-hydroxy-2-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-2,3-dihydrochromen-4-one
2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydrochromen-4-one
Cys Cys Pro Pro
Cys Pro Cys Pro
Cys Pro Pro Cys
Pro Cys Cys Pro
Pro Cys Pro Cys
Pro Pro Cys Cys
Isosakuranetin 7-xyloside
Naringenin 5-rhamnoside
Dihydrodaidzin
2-Hydroxy-3-methyl-4H-pyran-4-one O-(6E-cinnamoyl-b-D-glucoside)
6-Hydroxy-3,3',4',5,7,8-hexamethoxyflavone
Equol 4'-O-glucuronide
Equol 7-O-glucuronide
Phosphonium triphenyl ([phenylmethoxy]methyl)-chloride
1-(2,4-difluorophenyl)-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-1,8-naphthyridine-3-carboxylic acid
C20H17F3N4O3 (418.12526879999996)
1-(2,4-difluorophenyl)-6-fluoro-7-(3-methylpiperazin-1-yl)-4-oxo-1,8-naphthyridine-3-carboxylic acid
C20H17F3N4O3 (418.12526879999996)
Glycine, N-[2-[[(9H-fluoren-9-ylmethoxy)carbonyl]amino]ethyl]-N-(Methylsulfonyl)-
4-Amino-2-[(1S)-1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl]-1H-isoindole-1,3(2H)-dione
(3R)-3,4-Dihydro-3-(4-hydroxyphenyl)-2H-1-benzopyran-7-yl beta-D-glucopyranosiduronic acid
4-[[[3-(4-Morpholinylsulfonyl)phenyl]-oxomethyl]amino]benzoic acid ethyl ester
5-(4-acetyloxy-3-methoxyphenyl)-2,7-dimethyl-3-oxo-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester
likviritin
Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
6-[3-Hydroxy-2-(3,5,7-trioxononanoyl)phenyl]-3,5-dioxohexanoic acid
hydrangeic acid 4-O-beta-D-glucopyranoside
A monohydroxybenzoic acid that is benzoic acid substituted by a hydroxy group at position 6 and a 2-phenylethenyl group at position 2 which in turn is attached to a beta-D-glucopyranosyloxy group at position 4. It has been isolated from the roots of Scorzonera judaica.
2-[(1-cyclohexyl-5-tetrazolyl)thio]-N-(6-ethoxy-1,3-benzothiazol-2-yl)acetamide
C18H22N6O2S2 (418.12455919999996)
1-(2-Fluorophenyl)-3-[[1-[(2-methylphenyl)methyl]-2-oxo-3-indolylidene]amino]thiourea
hydrangenol 4-O-beta-D-glucopyranoside
A member of the class of dihydroisocoumarins that is hydrangenol attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has been isolated from the roots of Scorzonera judaica.
2-[(4-Methylphenyl)-oxomethyl]benzoic acid [2-(3-nitroanilino)-2-oxoethyl] ester
4-[[3-[(2-Furanylmethylamino)-oxomethyl]-7-methoxy-1-benzopyran-2-ylidene]amino]benzoic acid
(2S)-1-[oxo(thiophen-2-yl)methyl]-2-pyrrolidinecarboxylic acid [2-(2,4-dimethoxyanilino)-2-oxoethyl] ester
N-(2-hydroxyphenyl)-N-[(E)-(5-nitrothiophen-2-yl)methylideneamino]octanediamide
C19H22N4O5S (418.13108420000003)
3,4,5-Trihydroxy-6-[4-hydroxy-2-(3-phenylpropanoyl)phenoxy]oxane-2-carboxylic acid
[2-Hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] pentanoate
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
hydrangenol 8-O-beta-D-glucopyranoside
A member of the class of dihydroisocoumarins that is hydrangenol attached to a beta-D-glucopyranosyl residue at position 8 via a glycosidic linkage. It has been isolated from the roots of Scorzonera judaica.