Exact Mass: 392.30387700000006
Exact Mass Matches: 392.30387700000006
Found 500 metabolites which its exact mass value is equals to given mass value 392.30387700000006
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Ursodeoxycholate
Ursodeoxycholic acid is a bile acid found in the bile of bears (Ursidae) as a conjugate with taurine. Used therapeutically, it prevents the synthesis and absorption of cholesterol and can lead to the dissolution of gallstones. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of an ursodeoxycholate. Ursodeoxycholic acid is an epimer of [chenodeoxycholic acid]. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. Ursodiol is a Bile Acid. Ursodeoxycholic acid or ursodiol is a naturally occurring bile acid that is used dissolve cholesterol gall stones and to treat cholestatic forms of liver diseases including primary biliary cirrhosis. Ursodiol has been linked to rare instances of transient and mild serum aminotransferase elevations during therapy and to rare instances of jaundice and worsening of liver disease in patients with preexisting cirrhosis. Ursodeoxycholic acid is a natural product found in Myocastor coypus with data available. Ursodiol is a synthetically-derived form of ursodiol, a bile acid produced by the liver and secreted and stored in the gallbladder. Also produced by the Chinese black bear liver, ursodiol has been used in the treatment of liver disease for centuries. This agent dissolves or prevents cholesterol gallstones by blocking hepatic cholesterol production and decreasing bile cholesterol. Ursodiol also reduces the absorption of cholesterol from the intestinal tract. An epimer of chenodeoxycholic acid. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. See also: Dimethicone; pancrelipase; ursodiol (component of). Ursodeoxycholic acid, also known as ursodeoxycholate or acid deoxyursocholic, belongs to the class of organic compounds known as dihydroxy bile acids, alcohols and derivatives. Dihydroxy bile acids, alcohols and derivatives are compounds containing or derived from a bile acid or alcohol, and which bears exactly two carboxylic acid groups. Ursodeoxycholic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. An epimer of chenodeoxycholic acid. It is a mammalian bile acid found first in the bear and is apparently either a precursor or a product of chenodeoxycholate. Its administration changes the composition of bile and may dissolve gallstones. It is used as a cholagogue and choleretic. [HMDB] Ursodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=128-13-2 (retrieved 2024-07-02) (CAS RN: 128-13-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Deoxycholic acid
Deoxycholic acid is a bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. It has a role as a human blood serum metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a deoxycholate. Deoxycholic acid is a a bile acid which emulsifies and solubilizes dietary fats in the intestine, and when injected subcutaneously, it disrupts cell membranes in adipocytes and destroys fat cells in that tissue. In April 2015, deoxycholic acid was approved by the FDA for the treatment submental fat to improve aesthetic appearance and reduce facial fullness or convexity. It is marketed under the brand name Kybella by Kythera Biopharma and is the first pharmacological agent available for submental fat reduction, allowing for a safer and less invasive alternative than surgical procedures. Deoxycholic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Deoxycholic acid is a Cytolytic Agent. The physiologic effect of deoxycholic acid is by means of Decreased Cell Membrane Integrity. Deoxycholic acid is a natural product found in Pseudomonas syringae and Homo sapiens with data available. Deoxycholic Acid is a steroidal acid that is a secondary bile acid, with cytolytic activity. Upon subcutaneous administration, deoxycholic acid causes lysis of adipocytes and improves the appearance of fullness associated with submental fat. Also, it may potentially be able to reduce fat in other subcutaneous fatty tissues. Deoxycholic acid, naturally produced by the metabolism of cholic acid by intestinal bacteria, is involved in the emulsification of dietary fats in the intestine. Deoxycholic acid is a bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (A3407, A3408, A3409, A3410). A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholic acid is a secondary bile acid produced in the liver and is usually conjugated with glycine or taurine. It facilitates fat absorption and cholesterol excretion. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, and depends only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine, and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH, and consequently require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). When present in sufficiently high levels, deoxycholic acid can act as a hepatotoxin, a metabotoxin, and an oncometabolite. A hepatotoxin causes damage to the liver or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. An oncometabolite is a compound, when present at chronically high levels, that promotes tumour growth and survival. Among the primary bile acids, cholic acid is considered to be the least hepatotoxic while deoxycholic acid is the most hepatoxic (PMID: 1641875). The liver toxicity of bile acids appears to be due to their ability to peroxidate lipids and to lyse liver cells. High bile acid levels lead to the generation of reactive oxygen species and reactive nitrogen species, disruption of the cell membrane and mitochondria, induction of DNA damage, mutation and apoptosis, and the development of reduced apoptosis capability upon chronic exposure (PMID: 24884764). Chronically high levels of deoxycholic acid are associated with familial hypercholanemia. In hypercholanemia, bile acids, including deoxycholic acid, are elevated in the blood. This disease causes liver damage, extensive itching, poor fat absorption, and can lead to rickets due to lack of calcium in bones. The deficiency of normal bile acids in the intestines results in a deficiency of vitamin K, which also adversely affects clotting of the blood. The bile acid ursodiol (ursodeoxycholic acid) can improve symptoms associated with familial hypercholanemia. Chronically high levels of deoxycholic acid are also associated with several forms of cancer including colon cancer, pancreatic cancer, esophageal cancer, and many other GI cancers. A bile acid that is 5beta-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 12 respectively. Deoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-44-3 (retrieved 2024-07-01) (CAS RN: 83-44-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Chenodeoxycholic acid
Chenodeoxycholic acid is a dihydroxy-5beta-cholanic acid that is (5beta)-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 7 respectively. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a dihydroxy-5beta-cholanic acid and a C24-steroid. It is a conjugate acid of a chenodeoxycholate. Chenodeoxycholic acid (or Chenodiol) is an epimer of ursodeoxycholic acid (DB01586). Chenodeoxycholic acid is a bile acid naturally found in the body. It works by dissolving the cholesterol that makes gallstones and inhibiting production of cholesterol in the liver and absorption in the intestines, which helps to decrease the formation of gallstones. It can also reduce the amount of other bile acids that can be harmful to liver cells when levels are elevated. Chenodeoxycholic acid (chenodiol) is a primary bile acid, synthesized in the liver and present in high concentrations in bile that is used therapeutically to dissolve cholesterol gallstones. Chronic therapy is associated with transient elevations in serum aminotransferase levels in up to 30\\\\\% of patients, but chenodiol has been linked to only rare instances of clinically apparent liver injury with jaundice. Chenodeoxycholic acid is a natural product found in Ganoderma lucidum and Homo sapiens with data available. A bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones. Chenodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones. A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. A dihydroxy-5beta-cholanic acid that is (5beta)-cholan-24-oic acid substituted by hydroxy groups at positions 3 and 7 respectively. Chenodeoxycholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-25-9 (retrieved 2024-07-01) (CAS RN: 474-25-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
Murocholic acid
Murocholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids CONFIDENCE standard compound; INTERNAL_ID 300
Isodeoxycholic acid
Isodeoxycholic acid is a human fecal bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 3667743, 11316487, 16037564, 12576301, 11907135). Isodeoxycholic acid is a human fecal bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. [Analytical] Sample of 1 micorL methanol solution was flow injected.
Avideoxycholic acid
3b,7a-Dihydroxy-5b-cholanoic acid
3b,7a-Dihydroxy-5b-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. [Analytical] Sample of 1 micorL methanol solution was flow injected.
3a,12b-Dihydroxy-5b-cholanoic acid
3a,12b-Dihydroxy-5b-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. 3α,12β-Dihydroxycholanoic acid is a bile acid that can be isolated from urine specimens of healthy humans[1].
Isoursodeoxycholic acid
Isoursodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. [Analytical] Sample of 1 micorL methanol solution was flow injected. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
3beta,12alpha-Dihydroxy-5beta-cholan-24-oic Acid
A dihydroxy-5beta-cholanic acid in which the two hydroxy groups are located at positions 3beta and 12alpha. The 3beta-hydroxy epimer of deoxycholic acid. [Analytical] Sample of 1 micorL methanol solution was flow injected.
Allochenodeoxycholic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
Allodeoxycholic acid
An allo-bile acid that is 5alpha-cholan-24-oic acid bearing two alpha-hydroxy substituents at position 3 and 12. [Analytical] Sample of 1 micorL methanol solution was flow injected.
Hyodeoxycholate
Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells.
3b,12a-Dihydroxy-5a-cholanoic acid
3b,12a-Dihydroxy-5a-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D - Dermatologicals Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Isohyodeoxycholic acid
Isohyodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
3-Hydroxy-10'-apo-b,y-carotenal
3-Hydroxy-10-apo-b,y-carotenal is found in citrus. 3-Hydroxy-10-apo-b,y-carotenal isisolated from Sinton citrangequat. Prob. isolated from Sinton citrangequat. 3-Hydroxy-10-apo-b,y-carotenal is found in citrus.
7b,12a-Dihydroxycholanoic acid
7beta,12alpha-Dihydroxycholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135).
(22E, 24x)-Ergosta-4,6,8,22-tetraen-3-one
(22E, 24x)-Ergosta-4,6,8,22-tetraen-3-one is found in mushrooms. (22E, 24x)-Ergosta-4,6,8,22-tetraen-3-one is a constituent of Pleurotus ostreatus (oyster fungus) Constituent of Pleurotus ostreatus (oyster fungus). (22E, 24x)-Ergosta-4,6,8,22-tetraen-3-one is found in mushrooms.
3a,7a-Dihydroxycholanoic acid
3a,7a-Dihydroxycholanoic acid is a chenodeoxycholic or bile acid present in human blood serum. (PMID 13324110) and in the biliary excretion of patients with choledochostomy drainage (PMID 16695472). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. [HMDB] 3a,7a-Dihydroxycholanoic acid is a chenodeoxycholic or bile acid present in human blood serum. (PMID 13324110) and in the biliary excretion of patients with choledochostomy drainage (PMID 16695472). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
3b,12a-Dihydroxy-5b-cholanoic acid
3b,12a-Dihydroxy-5b-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
Allodeoxycholic acid
Allodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
Allochenodeoxycholic acid
Allochenodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
Hyodeoxycholic acid
Hyodeoxycholic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). A bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells.
7a,12b-dihydroxy-5b-Cholan-24-oic acid
7a,12b-dihydroxy-5b-Cholan-24-oic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). 7a,12b-dihydroxy-5b-Cholan-24-oic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB]
3beta,12beta-Dihydroxy-5beta-cholanoic acid
3b,12b-Dihydroxy-5b-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). 3b,12b-Dihydroxy-5b-cholanoic acid is a bile acid. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12.
20, 22-Dihydrodigoxigenin
20, 22-Dihydrodigoxigenin is a metabolite of digoxin. Digoxin is a purified cardiac glycoside and extracted from the foxglove plant, Digitalis lanata. Its corresponding aglycone is digoxigenin, and its acetyl derivative is acetyldigoxin. Digoxin is widely used in the treatment of various heart conditions, namely atrial fibrillation, atrial flutter and sometimes heart failure that cannot be controlled by other medication. Digoxin preparations are commonly marketed under the trade names Lanoxin, Digitek, and Lanoxicaps. (Wikipedia)
3-Methyl-5-pentyl-2-furanpentadecanoic acid
3-Methyl-5-pentyl-2-furanpentadecanoic acid is a furan fatty acid (F-acid). F-acids are heterocyclic fatty acids containing a central furan moiety with a carboxylalkyl chain (mostly 7, 9, 11, or 13 carbons) in the 2-position and an alkyl chain (mostly 3 or 5 carbons) in the 5-position. Despite being found in low concentrations in food lipids, they are excellent antixoxidants and radical scavengers. This allows them to play an important role in preventing lipid peroxidation and protecting polyunsaturated fatty acids. They are often incorporated into phospholipids and cholesterol esters of fish and other marine organisms. 3-Methyl-5-pentyl-2-furanpentadecanoic acid, in particular, can be described by the shorthand notation 15M5. This refers to its 15-carbon carboxyalkyl moiety, the methyl substitution in the 3-position of its furan moiety, and its 5-carbon alkyl moiety. It has been identified in mussels.
Ergosta-4,6,8(14),22-tetraen-3-one
(3a,5b,7a)-3,7-Dihydroxycholan-24-oic acid
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
3alpha,12beta-Dihydroxy-5alpha-cholan-24-oic Acid
4-[(5R,8S,10R,13R,17R)-3,6-Dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
Arterolane
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
(3R,5S,6R,7R,8S,9S,10S,13R,14S,17R)-6-Ethyl-17-((R)-4-hydroxybutan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthrene-3,7-diol
VIPROSTOL
MG(20:4(6E,8Z,11Z,14Z)+=O(5)/0:0/0:0)
MG(20:4(6E,8Z,11Z,14Z)+=O(5)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(20:4(5Z,8Z,11Z,13E)+=O(15)/0:0/0:0)
MG(20:4(5Z,8Z,11Z,13E)+=O(15)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/0:0/0:0)
MG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/0:0/0:0)
MG(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/0:0/0:0)
MG(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/0:0/0:0)
MG(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/20:4(6E,8Z,11Z,14Z)+=O(5)/0:0)
MG(0:0/20:4(6E,8Z,11Z,14Z)+=O(5)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/20:4(5Z,8Z,11Z,13E)+=O(15)/0:0)
MG(0:0/20:4(5Z,8Z,11Z,13E)+=O(15)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/0:0)
MG(0:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/0:0)
MG(0:0/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/0:0)
MG(0:0/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/0:0)
MG(0:0/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
Methyl-[12]-gingerol
Methyl-[12]-gingerol is a member of the class of compounds known as dimethoxybenzenes. Dimethoxybenzenes are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. Methyl-[12]-gingerol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Methyl-[12]-gingerol can be found in ginger, which makes methyl-[12]-gingerol a potential biomarker for the consumption of this food product.
Deoxycholic Acid
C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D - Dermatologicals Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Chenodiol
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D005765 - Gastrointestinal Agents > D002400 - Cathartics Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
Ursodiol
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Hyodeoxycholic_acid
Hyodeoxycholic acid is a member of the class of 5beta-cholanic acids that is (5beta)-cholan-24-oic acid substituted by alpha-hydroxy groups at positions 3 and 6. It has a role as a human metabolite and a mouse metabolite. It is a bile acid, a member of 5beta-cholanic acids, a 6alpha,20xi-murideoxycholic acid and a C24-steroid. It is functionally related to a cholic acid. It is a conjugate acid of a hyodeoxycholate. Hyodeoxycholic Acid has been used in trials studying the treatment of Hypercholesterolemia. A member of the class of 5beta-cholanic acids that is (5beta)-cholan-24-oic acid substituted by alpha-hydroxy groups at positions 3 and 6. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells.
Ergosta-4,6,8(14),22-tetraen-3-one
An ergostanoid that is (22E)-ergosta-4,6,8(14),22-tetraene substituted by an oxo group at position 3. It has been isolated from the mycelia of Cordyceps sinensis.
6alpha-Isobutyryloxy-7-oxo-13,14-dihydrokolavenic acid
(4S*,6S*)-Dihydroxy-6-(14Z-nonadecenyl)-2-cyclohexenone
chenodeoxycholic acid
MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RUDATBOHQWOJDD_STSL_0094_Chenodeoxycholic acid_0500fmol_180506_S2_LC02_MS02_225; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.466 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.465 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.467 Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
6alpha-Malonyloxymanoyl oxide
The malonate ester of a labdane diterpenoid. Isolated from the aerial parts of Stemodia foliosa, it exhibits antibacterial activity.
AUDA
C23H40N2O3 (392.30387700000006)
Chenodiol
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D005765 - Gastrointestinal Agents > D002400 - Cathartics Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
methyl 18-acetoxygrindelate|methyl-18-acetoxygrindeloate
1-(3-Methyl-5-acetoxypentyl)-2,5,5-trimethyl-6-acetoxy-8a-methyldecalin-2-ene
3beta,11beta,15beta-trihydroxy-6alpha-acetoxy-ent-kaur-16-ene|melissoidesin
21-Ac-(3alpha,5beta)-3,14,21-Trihydroxypregnan-20-one
21-Ac-(3alpha,5alpha,11beta)-3,11,21-Trihydroxypregnan-20-one
Di-Ac-5-[1-(2,2-Dimethylcyclopentylidene)ethyl]octahydro-4,4-dimethyl-1,3-isobenzofurandiol
22xi,23xi-Epoxy-5beta-cholan-3alpha,7alpha,12alpha-triol|22xi,23xi-epoxy-5beta-cholane-3alpha,7alpha,12alpha-triol
3-Ac-(3beta,5beta,14beta)-3,14,21-Trihydroxypregnan-20-one
4-hydroxy-2-octadec-(11Z)-enoylcyclohexane-1,3-dione|proctorione B
3-Ac-(3beta,5alpha,14beta,17alpha)-3,8,14-Trihydroxypregnan-20-one
2beta-methoxy-16-acetoxy-ent-labda-8(17),13Z-dien-15-oic acid
2-Acetoxy-5-methoxy-6-methyl-3-tridecyl-1,4-benzoquinone
10-Apo-Psi-carotin-10-saeure|apo-10-lycopenoic acid
3??-Hydroxy-7-acetoxy-4(18),13-clerodadien-15-oic acid methyl ester
3beta,6alpha,12beta-triol-22,23,24,25,26,27-hexanordammaran-20-one|3beta,6beta ,12beta-triol-22,23,24,25,26,27-hexanordammaran-20-one
7alpha,12alpha,13alpha-trihydroxyabiet-8(14)-en-18-oic acid acetonide|aquilarabietic acid C
5alpha-pregna-3beta-acetoxy-12beta,16beta-diol-20-one
(-)-(3S,2E)-3-hydroxy-2-icosylidene-4-methylenebutanolide
methyl (4S)-3,4-seco-4,21-dihydroxy-4-methyl-20-oxo-5alpha-pregna-8-en-3-oate|nodulisporisteriod B
(2R,3R,20R)-2,20-dihydroxy-3,21-dimethoxypregn-5-en-7-one|heligenin A
(2E)-2-(2,2-diethoxyethyl)-4-[(1R,3S,8aS)-3-hydroxy-5,5,8a-trimethyl-2-methylidenedecahydronaphthalen-1-yl]but-2-enal|hedycoronal A
methyl 15,17-epoxy-17alpha-acetoxy-ent-isocopalan-16-oate
(17S)-16-oxo-2,3-secopregnan-2,3-dioic acid dimethyl ester
3-Ac-(3beta,5alpha,17alphaOH)-3,17,21-Trihydroxypregnan-20-one
21-Ac-(3beta,5alpha,17alphaOH)-3,17,21-Trihydroxypregnan-20-one
2-Methoxy-3-tridecyl-5-acetoxy-6-methyl-1,4-benzoquinone
epiplakinic acid F methyl ester|methyl (3S,5R,14E,16E,18E)-3,5-dimethyl-3,5-peroxyeneicosa-14,16,18-trienoate
3,16-Di-Ac-(3beta,5beta,16alpha,17beta)-Androstane-3,16,17-triol
6-alpha-malonyloxymanoyl oxide|6alpha-malonyloxymaloyl oxide
2??-Hydroxy-7-acetoxy-3,13-clerodadien-15-oic acid methyl ester
7beta-acetoxy-15-hydroxylabda-8(17),13E-dien-19-oic acid methyl ester
3,17-Di-Ac-(3beta,5alpha,6alpha,17beta)-Androstane-3,6,17-triol
Leukotriene B4-3-aminopropylamide
C23H40N2O3 (392.30387700000006)
3alpha,12beta-Dihydroxy-5beta-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected. 3α,12β-Dihydroxycholanoic acid is a bile acid that can be isolated from urine specimens of healthy humans[1].
3beta,12beta-Dihydroxy-5beta-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
7alpha,12beta-Dihydroxy-5beta-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
7beta,12alpha-Dihydroxy-5beta-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
7beta,12beta-Dihydroxy-5beta-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
3alpha,7beta-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
3beta,7alpha-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
3beta,7beta-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
3alpha,12beta-Dihydroxy-5alpha-cholan-24-oic Acid
D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids [Analytical] Sample of 1 micorL methanol solution was flow injected.
3beta,12alpha-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
3beta,12beta-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
7alpha,12alpha-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
7alpha,12beta-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
7beta,12alpha-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
7beta,12beta-Dihydroxy-5alpha-cholan-24-oic Acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.
1b,3a-Dihydroxy-5b-cholan-24-oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
2b,3a-Dihydroxy-5b-cholan-24-oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3a,4b-Dihydroxy-5b-cholan-24-oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3b,4a-Dihydroxy-5b-cholan-24-oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3b,4b-Dihydroxy-5b-cholan-24-oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3a,6a-Dihydroxy-5b-cholan-24-Oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3a,6b-Dihydroxy-5b-cholan-24-Oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3b,6a-Dihydroxy-5b-cholan-24-Oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3b,6b-Dihydroxy-5b-cholan-24-oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz
3a,6b-Dihydroxy-5a-cholan-24-oic acid
[Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz; In-suorce decay
Deoxycholic Acid
Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Hyodeoxycholic acid
Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells.
Ursodiol
3b,6a-(OH)2-5a-cholanic acid
BA-97-150. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-97-120. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-97-60. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-97-30. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan.
3b,6b-(OH)2-5a-cholanic acid
BA-98-150. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan. BA-98-30. In-source decay; 1 microL of the bile acid in MeOH solution was flow injected. Sampling interval was 1 Hz.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 17HP8021 (2017) to the MassBank database committee of the Mass Spectrometry Society of Japan.
Chenix
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AA - Bile acids and derivatives C78276 - Agent Affecting Digestive System or Metabolism > C66913 - Cholagogues or Choleretic Agents D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D005765 - Gastrointestinal Agents > D002400 - Cathartics Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
Chenodeoxycholate
Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
(R)-4-((3S,5S,7R,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(4R)-4-((3R,5S,7S,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(4R)-4-((5S,7S,9S,10S,12R,13R,14S,17R)-7,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(4R)-4-((3R,5R,7R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(R)-4-((3S,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(R)-4-((3S,5S,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(R)-4-((3R,5S,8R,9S,10S,12R,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(R)-4-((3R,5R,6R,8S,9S,10R,13R,14S,17R)-3,6-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(R)-4-((3R,4R,5S,8S,9S,10R,13R,14S,17R)-3,4-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(2R,4R)-2-hydroxy-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(R)-4-((1R,3S,5R,8S,9S,10S,13R,14S,17R)-1,3-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(4R)-4-((3R,5R,6S,9S,10R,13R,14S,17R)-3,6-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(4R)-4-((5S,7R,9S,10S,12S,13R,14S,17R)-7,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
deoxycholate
Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2]. Deoxycholic acid (cholanoic acid), a bile acid, is a by-product of intestinal metabolism, that activates the G protein-coupled bile acid receptorTGR5[1][2].
Isoursodeoxycholic acid
A dihydroxy-5beta-cholanic acid that is (5beta)-cholan-24-oic acid substituted by beta-hydroxy groups at positions 3 and 7. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Iodeoxycholate
Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells. Hyodeoxycholic acid is a secondary bile acid formed in the small intestine by the gut flora, and acts as a TGR5 (GPCR19) agonist, with an EC50 of 31.6 μM in CHO cells.
(22E, 24x)-Ergosta-4,6,8,22-tetraen-3-one
apo-3-Zeaxanthinal
ST 24:1;O4
D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids 3α,12β-Dihydroxycholanoic acid is a bile acid that can be isolated from urine specimens of healthy humans[1].
5-((3Z,6Z,9Z,12Z,15Z,18Z)-henicosa-3,6,9,12,15,18-hexaen-1-yl)resorcinol
(Z)-Poly(oxy-1,2-ethanediyl), .alpha.-(carboxymethyl)-.omega.-(9-octadecenyloxy)-, sodium salt,
C22H41NaO4 (392.29023860000007)
(4R)-4-[(3R,5S,7S,8R,9S,10S,13R,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
Toreforant
D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C78284 - Agent Affecting Integumentary System > C29708 - Anti-psoriatic Agent Toreforant is a potent and selective histamine H4 receptor (H4R) antagonist, with a Ki at the human receptor of 8.4 nM.
bis(5-methyl-2-propan-2-ylcyclohexyl) but-2-enedioate
3,6-Bis(dimethylamino)-10-nonylacridinium
D004396 - Coloring Agents
Cholan-24-oic acid, 3,12-dihydroxy-, (3alpha,5beta,12alpha)-
1-Hexadecanaminium, N,N-dimethyl-N-(3-sulfopropyl)-
C21H46NO3S+ (392.31982260000007)
6-ethyl-17-(4-hydroxybutan-2-yl)-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene-3,7-diol
20,22-Dihydrodigoxigenin
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides
(E)-3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-4-hydroxybut-2-enoic acid
10,13-Dimethyl-17-(1,4,5-trimethyl-hex-2-enyl)-1,2,9,10,11,12,13,15,16,17-decahydrocyclopenta[a]phenanthren-3-one
methyl (E)-7-[2-[(E)-4-ethenyl-4-hydroxyoct-1-enyl]-3-hydroxy-5-oxocyclopentyl]hept-5-enoate
4-[(3R,5R,8R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
(2R,4R)-2-hydroxy-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid
(4R)-4-[(3R,5S,7R,8S,9R,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
(4R)-4-[(3R,5S,7S,8S,9R,10S,13R,14S,17S)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
4-[(10S,13R)-2,2,4,4-tetradeuterio-3,12-dihydroxy-10,13-dimethyl-3,5,6,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] propanoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-hydroxypropan-2-yl] pentanoate
(1XI,2R,4AS,5S,8AS)-(+)-1-(3,3-Ethylenedioxymethyl)-1-hydroxy-2alpha,5beta,8abeta-trimethyldecahydronaphthalene
[3-carboxy-2-[(7Z,9Z,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl]-trimethylazanium
C23H38NO4+ (392.28006880000004)
1-Methyl-4-(11-(1,1-dimethylethoxycarbonyl)-5,9-dimethyl-undeca-4,8-dienoyl)-piperadine
C23H40N2O3 (392.30387700000006)
2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxyacetic acid
(1-acetyloxy-3-hydroxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(1-butanoyloxy-3-hydroxypropan-2-yl) (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
4-[(3R,5R,6S,8S,9S,14S,17R)-3,6-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
4-[(3R,5R,8R,9S,12S,14S,17R)-3,12-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
4-[(3R,5S,7S,8R,9S,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
4-[(3R,5S,7R,8R,9S,14S,17R)-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoic acid
2-[Carboxy-(2-hydroxy-3-nonanoyloxypropoxy)methoxy]ethyl-trimethylazanium
3beta,7alpha-Dihydroxy-5beta-cholan-24-oic Acid
A dihydroxy-5beta-cholanic acid in which the two hydroxy groups are located at positions 3beta and 7alpha. The 3beta-hydroxy epimer of chenodeoxycholic acid.
Murideoxycholate
A 3alpha-hydroxy steroid that is cholan-24-oic acid substituted by hydroxy groups at positions 3 and 6. D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
Arterolane
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
3alpha,7alpha,12alpha-Trihydroxy-5beta-cholan-24-al
3beta,6beta-Dihydroxy-5beta-cholan-24-oic Acid
A dihydroxy-5beta-cholanic acid with hydroxy groups located at positions 3beta and 6beta.
3alpha,7alpha,12alpha-Trihydroxy-5alpha-cholan-24-al
24-methylcholesta-4,6,8(14),22-tetraen-3-one
A natural product found in Xylaria species.
Ursodeoxycholic Acid
A bile acid found in the bile of bears (Ursidae) as a conjugate with taurine. Used therapeutically, it prevents the synthesis and absorption of cholesterol and can lead to the dissolution of gallstones.
DG(20:4)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Chenodesoxycholic acid
Chenodeoxycholic acid (CDCA; also known as chenodesoxycholic acid, chenocholic acid and 3α,7α-dihydroxy-5β-cholan-24-oic acid) is a bile acid. Salts of this carboxylic acid are called chenodeoxycholates. Chenodeoxycholic acid is one of the main bile acids.[1][2][3] It was first isolated from the bile of the domestic goose, which gives it the "cheno" portion of its name (Greek: χήν = goose).[4] Chenodeoxycholic acid and cholic acid are the two primary bile acids in humans. Chenodeoxycholic acid has two hydroxyl groups and is modified with the addition of another hydroxyl group to produce cholic acid. Some other mammals have muricholic acid or deoxycholic acid rather than chenodeoxycholic acid.[1] It occurs as a white crystalline substance insoluble in water but soluble in alcohol and acetic acid, with melting point at 165–167 °C.[citation needed] Chenodeoxycholic acid is synthesized in the liver from cholesterol via several enzymatic steps.[1] Like other bile acids, it can be conjugated with taurine or glycine, forming taurochenodeoxycholate or glycochenodeoxycholate. Conjugation results in a lower pKa. This results in the conjugated bile acids being ionized at the usual pH in the intestine, and staying in the gastrointestinal tract until reaching the ileum to be reabsorbed.[3] CDCA and other bile acids are surfactants forming micelles with fats, which facilitate lipid digestion. After absorption, they are taken up by the liver and resecreted, so undergoing an enterohepatic circulation. Unabsorbed CDCA can be metabolised by bacteria in the colon to form the secondary bile acid, lithocholic acid or the epimer, ursodeoxycholic acid.[3] CDCA is the most potent natural bile acid at stimulating the nuclear bile acid receptor, farnesoid X receptor (FXR).[5] The transcription of many genes is activated by FXR, including those encoding FGF19 and small heterodimer partner.[6] Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism. Chenodeoxycholic Acid is a hydrophobic primary bile acid that activates nuclear receptors (FXR) involved in cholesterol metabolism.
Isochenodeoxycholic Acid
-
2-{6-methyl-6-[(3e,7e)-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-1,2-dioxan-3-yl}propanoic acid
(4s,5s)-4-hydroxy-5-[(2r)-2-hydroxy-11-(4-hydroxyphenyl)-2-methylundecyl]-5-methyloxolan-2-one
(2r)-2-[(3r,6r)-6-methyl-6-[(3e)-4-methyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hex-3-en-1-yl]-1,2-dioxan-3-yl]propanoic acid
(4s)-3,4-dihydroxy-2-[(11z)-octadec-11-enoyl]cyclohex-2-en-1-one
3,6-dihydroxy-2-(octadec-10-enoyl)cyclohex-2-en-1-one
(1s,2s,5r,10r,11r,14r,16r,17r)-17-hydroxy-17-(hydroxymethyl)-2,7,7,10-tetramethyl-6,8-dioxapentacyclo[14.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]icosan-12-one
2-{6-methyl-6-[4-methyl-6-(2,6,6-trimethylcyclohex-1-en-1-yl)hex-3-en-1-yl]-1,2-dioxan-3-yl}propanoic acid
(1s,4ar,7s,8s,8as)-8-{2-[(2r,4r)-4-hydroxy-6-oxooxan-2-yl]ethyl}-7-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl (2s)-2-methylbutanoate
3a,9b-dihydroxy-5,8-dimethyl-1-methylidene-2h,4h,5h,5ah,6h,9h,9ah-naphtho[2,1-b]furan-9-yl octanoate
(2e,4e,6e,8e,10e,12e,14e)-15-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-4,9,13-trimethylpentadeca-2,4,6,8,10,12,14-heptaenal
2-{6-[2-(1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl)ethyl]-6-methyl-1,2-dioxan-3-yl}propanoic acid
methyl (1r,2r,4ar,5s,8ar)-2-(acetyloxy)-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
(1r,9ar,9br,11ar)-1-[(2s,3e,5r)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one
(3s,4r,5r)-4-hydroxy-3-(icos-11-yn-1-yl)-5-methyloxolan-2-one
(1r,3s,3ar,6r,7e,7ar)-3-(acetyloxy)-7-ethylidene-6-[(1s)-1,3,3-trimethylcyclohexyl]-hexahydro-1h-2-benzofuran-1-yl acetate
(2r)-2-[(3r,6r)-6-{2-[(4as,8as)-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl]ethyl}-6-methyl-1,2-dioxan-3-yl]propanoic acid
4-hydroxy-3-(icos-11-yn-1-yl)-5-methyloxolan-2-one
(1s,2s,4ar,4br,8as,9s,10ar)-1-[(3z)-5-hydroxy-3-methylpent-3-en-1-yl]-2,4b,8,8,10a-pentamethyl-decahydrophenanthrene-2,9-diol
5-(6-hydroxy-2,5,5,8a-tetramethyl-1,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpentyl 2-methylbutanoate
methyl 2-[(3s,5r)-5-[(9e,11e,13e)-hexadeca-9,11,13-trien-1-yl]-3,5-dimethyl-1,2-dioxolan-3-yl]acetate
17-hydroxy-17-(hydroxymethyl)-2,7,7,10-tetramethyl-6,8-dioxapentacyclo[14.3.1.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]icosan-12-one
methyl (1s,4ar,5r,7s,8ar)-7-(acetyloxy)-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
2β-hydroxy-7-acetoxy-3,13-clerodadien-15-oicacid methyl ester
{"Ingredient_id": "HBIN005393","Ingredient_name": "2\u03b2-hydroxy-7-acetoxy-3,13-clerodadien-15-oicacid methyl ester","Alias": "NA","Ingredient_formula": "C23H36O5","Ingredient_Smile": "CC1C(CC2(C(C1(C)CCC(=CC(=O)OC)C)CC(C=C2C)O)C)OC(=O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9750","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2-methoxy-5-acetoxy-6-methyl-3-tridecyl-1,4-benzoquinone
{"Ingredient_id": "HBIN005896","Ingredient_name": "2-methoxy-5-acetoxy-6-methyl-3-tridecyl-1,4-benzoquinone","Alias": "NA","Ingredient_formula": "C23H36O5","Ingredient_Smile": "CCCCCCCCCCCCCC1=C(C(=O)C(=C(C1=O)OC(=O)C)C)OC","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "13823","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3α-hydroxy-7-acetoxy-4(18),13-clerodadien-15-oicacid methyl ester
{"Ingredient_id": "HBIN007950","Ingredient_name": "3\u03b1-hydroxy-7-acetoxy-4(18),13-clerodadien-15-oicacid methyl ester","Alias": "NA","Ingredient_formula": "C23H36O5","Ingredient_Smile": "CC1C(CC2(C(C1(C)CCC(=CC(=O)OC)C)CCC(C2=C)O)C)OC(=O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9751","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3β-hydroxy-7-acetoxy-4(18),13-clerodadien-15-oicacid methyl ester
{"Ingredient_id": "HBIN008235","Ingredient_name": "3\u03b2-hydroxy-7-acetoxy-4(18),13-clerodadien-15-oicacid methyl ester","Alias": "NA","Ingredient_formula": "C23H36O5","Ingredient_Smile": "CC1C(CC2(C(C1(C)CCC(=CC(=O)OC)C)CCC(C2=C)O)C)OC(=O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9752","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}