Exact Mass: 313.1598
Exact Mass Matches: 313.1598
Found 170 metabolites which its exact mass value is equals to given mass value 313.1598
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Armepavine
Armepavine is a member of isoquinolines. (-)-Armepavine is a natural product found in Berberis integerrima, Aconitum variegatum, and other organisms with data available. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1]. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1].
Ethylmorphine
A narcotic analgesic and antitussive. It is metabolized in the liver by ethylmorphine-N-demethylase and used as an indicator of liver function. It is not marketed in the US but is approved for use in various countries around the world. In the US it is a schedule II drug (single-entity) and schedule III drug (in combination products). R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals
(+)-Erysotrine
(+)-Erysotrine is found in green vegetables. (+)-Erysotrine is an alkaloid from a wide range of Erythrina species including Erythrina abyssinica, Erythrina arborescens, Erythrina atitlanensis, Erythrina blakei, Erythrina caffra, Erythrina coralloides, Erythrina crista-galli, Erythrina flabelliformis, Erythrina folkersii, Erythrina fusca (gallito), Erythrina goldmanii, Erythrina guatemalensis, Erythrina herbacea, Erythrina lithosperma, Erythrina livingstoniana, Erythrina macrophylla, Erythrina mulungu, Erythrina oliviae, Erythrina poeppigiana, Erythrina senegalensis, Erythrina steyermarkii, Erythrina suberosa, Erythrina tajumulcensis, Erythrina variegata and Erythrina zeher
3-Methoxyestra-1,3,5(10)-trien-16-oximino-17-one
6-O-Methylcodeine
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids 6-O-Methylcodeine is a minor alkaloid of Papaver somniferum (opium poppy
Reboxetine
Reboxetine is an antidepressant drug used in the treatment of clinical depression, panic disorder and ADD/ADHD. Its mesylate (i.e. methanesulfonate) salt is sold under tradenames including Edronax, Norebox, Prolift, Solvex, Davedax or Vestra. Reboxetine has two chiral centers, but it only exists as two enantiomers, (R,R)-(-)- and (S,S)-(+)-reboxetine.
3,4-dimethylidenehexanedioylcarnitine
3,4-dimethylidenehexanedioylcarnitine is an acylcarnitine. More specifically, it is an 3,4-dimethylidenehexanedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3,4-dimethylidenehexanedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3,4-dimethylidenehexanedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Octa-3,5-dienedioylcarnitine
Octa-3,5-dienedioylcarnitine is an acylcarnitine. More specifically, it is an octa-3,5-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. octa-3,5-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine octa-3,5-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Octa-2,6-dienedioylcarnitine
Octa-2,6-dienedioylcarnitine is an acylcarnitine. More specifically, it is an octa-2,6-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. octa-2,6-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine octa-2,6-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2Z,4Z)-Octa-2,4-dienedioylcarnitine
(2Z,4Z)-octa-2,4-dienedioylcarnitine is an acylcarnitine. More specifically, it is an (2Z,4Z)-octa-2,4-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2Z,4Z)-octa-2,4-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2Z,4Z)-octa-2,4-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Octa-3,6-dienedioylcarnitine
Octa-3,6-dienedioylcarnitine is an acylcarnitine. More specifically, it is an octa-3,6-dienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. octa-3,6-dienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine octa-3,6-dienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
10-(2-(Diethylamino)propyl)-10H-pyrido(3,2-b)(1,4)benzothiazine
Mavoglurant
Myofedrin
D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents
5,6,8,9-tetrahydro-3,12-dimethoxy-7-methyl-dibenzazonin-2-ol|5,6,8,9-tetrahydro-3,12-dimethoxy-7-methyl-dibenz[d,f]azonin-2-ol|Laurifinin|laurifinine
7,8-Dimethoxy-2-methyl-1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline
15,16-methanediyldioxy-3beta-methoxy-11a-homo-erythrin-1(6)-ene|3-epi-epischellhammericine|3-epi-schelhammereicine|3-epi-Schelhammericin|3-epi-schelhammericine|3-Epischelhammericine
(+-)Petalinjodid|1-(4-Methoxy-benzyl)-1,2,3,4-tetrahydro-7-methoxy-2-methyl-8-isochinolinol|1-(4-Methoxy-benzyl)-8-hydroxy-7-methoxy-2-methyl-1,2,3,4-tetrahydro-isochinolin|1-(4-Methoxybenzyl)-7-methoxy-2-methyl-1,2,3,4-tetrahydro-8-isochinolinol|7-methoxy-1-(4-methoxy-benzyl)-2-methyl-1,2,3,4-tetrahydro-isoquinolin-8-ol|Gorchacoine|Gortschakoin|Petalinjodid
7-(1,3-benzodioxol-5-yl)-1-piperidin-1-ylhepta-2,4-dien-1-one
(2E,6E)-7-(benzo[d][1,3]dioxol-5-yl)-1-(piperidin-1-yl)hepta-2,6-dien-1-one|4,5-dihydropiperettine|pipersintenamide
alpha-Codeimethine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.481 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.478
Maprotiline Hydrochloride
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
ethylmorphine
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics S - Sensory organs > S01 - Ophthalmologicals
PC(O-2:0/O-2:0)
PC(O-4:0/0:0)[U]
Reboxetine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C185721 - Norepinephrine Reuptake Inhibitor C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators
Codeine methyl ether
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
tert-butyl 4-(4-amino-2,6-difluorophenyl)piperazine-1-carboxylate
2H-Pyrrol-2-one, 4-acetyl-5-cyclohexyl-1,5-dihydro-3-hydroxy-1-(4-methylphenyl)-
2H-Pyrrol-2-one, 4-acetyl-5-cyclohexyl-1,5-dihydro-3-hydroxy-1-(4-methylphenyl)-, (5R)-
Xenysalate
D - Dermatologicals > D11 - Other dermatological preparations > D11A - Other dermatological preparations > D11AC - Medicated shampoos C78284 - Agent Affecting Integumentary System > C29700 - Astringent
1-(4-methoxyphenyl)-2-[2-(4-methoxyphenyl)ethylamino]propan-1-one
(4R)-2-Methyl-4,5,5-triphenyl-1,3,2-oxazaborolidine
2H,4H-[1,3]Dioxolo[4,5-h]indolo[7a,1-a][2]benzazepine,1,5,6,12,13,14-hexahydro-13-methoxy-, (11bS,13S)-
Acecainide hydrochloride
C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents C93038 - Cation Channel Blocker
mavoglurant
C78272 - Agent Affecting Nervous System Mavoglurant (AFQ056) is a potent, selective, non-competitive and orally active mGluR5 antagonist, with an IC50 of 30 nM. Mavoglurant shows a >300 fold selectivity for the mGluR5 over all targets (238) tested. Mavoglurant can be used for the research of Fragile X syndrome (FXS), and L-dopa induced dyskinesias in Parkinson's disease[1][1][2]. Mavoglurant is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
4-Benzyloxy-2-piperidine-1-yl-pyrimidine-5-boronic acid
Amitriptyline Hydrochloride
D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D049990 - Membrane Transport Modulators Amitriptyline hydrochloride is an inhibitor of serotonin reuptake transporter (SERT) and noradrenaline reuptake transporter (NET), with Kis of 3.45 nM and 13.3 nM for human SERT and NET, respectively. Amitriptyline hydrochloride also weakly binds to dopamine reuptake transporter (DAT) with a Ki of 2.58 μM. Amitriptyline hydrochloride also inhibits adrenergic, muscarinic, histamine and 5-HT receptors. Amitriptyline hydrochloride is a TrkA and TrkB receptors agonist with potent neurotrophic activity. Amitriptyline hydrochloride has antidepressant activity[1][2][3].
6,7-dimethoxy-1-[(4-methoxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline
oxyfedrine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents
7,8-Dihydro-6-hydroxymethyl-7-methyl-7-[2-phenylethyl]-pterin
erythro-9-(2-Hydroxy-3-nonyl)adenine hydrochloride
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
7-Isoquinolinol, 1,2,3,4-tetrahydro-6-methoxy-1-((4-methoxyphenyl)methyl)-2-methyl-, (S)-
14-[2-(Dimethylamino)ethyl]-11-methoxy-15-oxatetracyclo[10.2.1.05,14.08,13]pentadeca-3,6,8(13),9,11-pentaen-2-ol
1-isopropyl-3-(3,4-dimethoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine
(2S)-2-[(E)-[(2S)-2-amino-3-(4-hydroxyphenyl)propylidene]amino]-3-(4-hydroxyphenyl)propanal
(2S)-2-[[(2E,6E)-7-carboxy-3-methylocta-2,6-dienyl]amino]pentanedioic acid
N,N-dimethyl-3-[(2-phenyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)thio]-1-propanamine
3-[5-(4-Methylphenyl)-1-(2-oxolanylmethyl)-2-pyrrolyl]propanoic acid
1-(2-Fluorophenyl)-3-[2-(1-piperidinyl)phenyl]urea
(2R)-2-[(S)-(2-ethoxyphenoxy)-phenylmethyl]morpholine
3-Methoxyestra-1,3,5(10)-triene-16,17-dione 16-oxime
(3-Butoxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
2-Aminoethyl (3-heptoxy-2-hydroxypropyl) hydrogen phosphate
6-O-METHYLCODEINE
D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids
(2e,4e)-7-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)hepta-2,4-dien-1-one
(2e,6e)-7-(2h-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)hepta-2,6-dien-1-one
1- [α-(1- adamantyl)]- phenyl thiosemicarbazide
{"Ingredient_id": "HBIN002265","Ingredient_name": "1- [\u03b1-(1- adamantyl)]- phenyl thiosemicarbazide","Alias": "NA","Ingredient_formula": "C18H23N3S","Ingredient_Smile": "C1C2CC3CC1CC(C2)(C3)C(=NNC(=S)N)C4=CC=CC=C4","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "35120","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
3-epischelhammericine
{"Ingredient_id": "HBIN008501","Ingredient_name": "3-epischelhammericine","Alias": "NA","Ingredient_formula": "C19H23NO3","Ingredient_Smile": "COC1CC=C2CCN3C2(C1)C4=CC5=C(C=C4CCC3)OCO5","Ingredient_weight": "313.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "7013","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "296196","DrugBank_id": "NA"}
3-epishelhammericine
{"Ingredient_id": "HBIN008502","Ingredient_name": "3-epishelhammericine","Alias": "NA","Ingredient_formula": "C19H23NO3","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "25791","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
amuronine
{"Ingredient_id": "HBIN015931","Ingredient_name": "amuronine","Alias": "NA","Ingredient_formula": "C19H23NO3","Ingredient_Smile": "CN1CCC2=CC(=C(C3=C2C1CC34CCC(=O)C=C4)OC)OC","Ingredient_weight": "313.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1101","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "12306126","DrugBank_id": "NA"}