Sulfide ion (BioDeep_00000895283)
代谢物信息卡片
化学式: S-2 (31.9721)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: [S-2]
InChI: InChI=1S/S/q-2
相关代谢途径
Reactome(4)
BioCyc(0)
PlantCyc(0)
代谢反应
286 个相关的代谢反应过程信息。
Reactome(4)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur compound metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Cysteine synthesis from O-acetylserine:
OAcSer + S(2-) ⟶ CH3COO- + L-Cys
BioCyc(2)
- lipoate biosynthesis and incorporation II:
ATP + a [lipoyl-carrier protein]-L-lysine + octanoate ⟶ AMP + H+ + a [lipoyl-carrier protein] N6-octanoyl-L-lysine + diphosphate
- lipoate biosynthesis and incorporation II:
H+ + SAM + a [lipoyl-carrier protein] N6-octanoyl-L-lysine + a reduced ferredoxin [iron-sulfur] cluster + an [Fe-S] cluster scaffold protein carrying a [4Fe-4S]+2 cluster ⟶ 5'-deoxyadenosine + Fe2+ + a [lipoyl-carrier protein] N6-[(R)-dihydrolipoyl]-L-lysine + an [Fe-S] cluster scaffold protein + an oxidized ferredoxin [iron-sulfur] cluster + met + sulfide(2-)
WikiPathways(0)
Plant Reactome(280)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Faisal Zulfiqar, Anam Moosa, Hayssam M Ali, John T Hancock, Jean Wan Hong Yong. Synergistic interplay between melatonin and hydrogen sulfide enhances cadmium-induced oxidative stress resistance in stock (Matthiola incana L.).
Plant signaling & behavior.
2024 Dec; 19(1):2331357. doi:
10.1080/15592324.2024.2331357
. [PMID: 38564424] - Xilong Qian, Ying Wang, Zheng Liu, Fang Fang, Yulu Ma, Liu Zhou, Yanqiong Pan, Xiangsong Meng, Baofei Yan, Xingyu Zhu, Xiuxiu Wang, Jing Zhao, Shengjin Liu. Establishment of XRD fourier fingerprint identification method of realgar decoction pieces and its anti-tumor activity in tumor-in-situ transplanted mice.
Journal of ethnopharmacology.
2024 Sep; 331(?):118303. doi:
10.1016/j.jep.2024.118303
. [PMID: 38734390] - Xia Liu, Ming Chen, Dengjun Wang, Feng Du, Nan Xu, Wu Sun, Zhaoxiang Han. Cr(VI) removal during cotransport of nano-iron-particles combined with iron sulfides in groundwater: Effects of D. vulgaris and S. putrefaciens.
Journal of hazardous materials.
2024 Jul; 472(?):134583. doi:
10.1016/j.jhazmat.2024.134583
. [PMID: 38749250] - Yao Chen, Hui Wang, Haiyang Wang, Jie Gao, Yamin Huang, Yu Zhang, Xianhai Lv. Industrial Distillation Fractions of Garlic Essential Oil, Design, Synthesis, and Antifungal Activity Evaluation of Aliphatic Substituted Trisulfide Derivatives.
Chemistry & biodiversity.
2024 May; 21(5):e202400027. doi:
10.1002/cbdv.202400027
. [PMID: 38602839] - Varinder Khepar, Anjali Sidhu, Ramandeep Kaur Mankoo, Pooja Manchanda, Anju Bala Sharma. Nanobiostimulant action of trigolic formulated zinc sulfide nanoparticles (ZnS-T NPs) on rice seeds by triggering antioxidant defense network and plant growth specific transcription factors.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108605. doi:
10.1016/j.plaphy.2024.108605
. [PMID: 38593487] - Jiaqing Wu, Jinyu Liu, Junwei Sun, Yingpin Liu, Tao He, Jing Zhao, Xinyue Mei, Yixiang Liu, Min Yang, Shusheng Zhu. Diallyl Trisulfide Acts as a Soil Disinfestation Against the Ilyonectria destructans through Inducing the Burst of Reactive Oxygen Species.
Journal of agricultural and food chemistry.
2024 May; 72(17):9669-9679. doi:
10.1021/acs.jafc.4c01422
. [PMID: 38632108] - Tianqi Wang, Xiaoju Li, Honglei Liu, Huaiwei Liu, Yongzhen Xia, Luying Xun. Microorganisms uptake zero-valent sulfur via membrane lipid dissolution of octasulfur and intracellular solubilization as persulfide.
The Science of the total environment.
2024 Apr; 922(?):170504. doi:
10.1016/j.scitotenv.2024.170504
. [PMID: 38307292] - John Yeboah, Zachary J Metott, Christopher M Butch, Patrick C Hillesheim, Arsalan Mirjafari. Are nature's strategies the solutions to the rational design of low-melting, lipophilic ionic liquids?.
Chemical communications (Cambridge, England).
2024 Apr; 60(29):3891-3909. doi:
10.1039/d3cc06066g
. [PMID: 38420843] - Kasper Elgetti Brodersen, Maria Mosshammer, Meriel J Bittner, Søren Hallstrøm, Jakob Santner, Lasse Riemann, Michael Kühl. Seagrass-mediated rhizosphere redox gradients are linked with ammonium accumulation driven by diazotrophs.
Microbiology spectrum.
2024 Apr; 12(4):e0333523. doi:
10.1128/spectrum.03335-23
. [PMID: 38426746] - Shiqi Lyu, Zurina Zainal Abidin, Thomas Choong Shean Yaw, Mohamad Faiz Mukhtar Gunam Resul. Synthesis of surface-modified porous polysulfides from soybean oil by inverse vulcanization and its sorption behavior for Pb(II), Cu(II), and Cr(III).
Environmental science and pollution research international.
2024 Apr; 31(20):29264-29279. doi:
10.1007/s11356-024-33152-w
. [PMID: 38573576] - Ziwei Guo, Huan He, Gui Yang, Kunqian Liu, Yanting Xi, Zihui Li, Yu Luo, Zhicheng Liao, Guohua Dao, Xiaomin Ren, Bin Huang, Xuejun Pan. The environmental risks of antiviral drug arbidol in eutrophic lake: Interactions with Microcystis aeruginosa.
Journal of hazardous materials.
2024 Mar; 466(?):133609. doi:
10.1016/j.jhazmat.2024.133609
. [PMID: 38310846] - Yongpeng Ma, Chaobin Shi, Jianghui Du, Zejun Zhu, Xiaojing Zhang, Qiong Wang, Nan Liu. The key role of unsaturated olefin content on polysulfides prepared via inverse vulcanization of waste plant oils for mercury removal from wastewater.
Environmental science and pollution research international.
2024 Mar; 31(13):19753-19763. doi:
10.1007/s11356-024-32452-5
. [PMID: 38363504] - Vivekanand Tiwari, Yuval Bussi, Itzhak Kamara, Adi Faigenboim, Vered Irihimovitch, Dana Charuvi. Priming avocado with sodium hydrosulfide prior to frost conditions induces the expression of genes involved in protection and stress responses.
Physiologia plantarum.
2024 Mar; 176(2):e14291. doi:
10.1111/ppl.14291
. [PMID: 38628053] - Shiqi Lyu, Zurina Zainal Abidin, Thomas Choong Shean Yaw, Mohamad Faiz Mukhtar Gunam Resul. Inverse vulcanization induced oxygen modified porous polysulfides for efficient sorption of heavy metals.
Environmental science and pollution research international.
2024 Mar; 31(11):16940-16957. doi:
10.1007/s11356-024-32323-z
. [PMID: 38326685] - Hai-Zhu Zheng, Tian-Ying Chang, Bo Peng, Shi-Qi Ma, Zhen Zhong, Jia-Zhen Cao, Lin Yao, Meng-Yuan Li, Hong-Feng Wang, Xing Liao. Chinese patent medicine as a complementary and alternative therapy for type 2 diabetes mellitus: A scoping review.
Complementary therapies in medicine.
2024 Mar; 80(?):103014. doi:
10.1016/j.ctim.2024.103014
. [PMID: 38184284] - Jingyu Wen, Xin Tang, Mengyuan Wang, Li Mu, Weidan Hao, Jingxian Weng, Ziwei Gao, Xiangang Hu. Regulation and mechanism of pyrite and humic acid on the toxicity of arsenate in lettuce.
The Science of the total environment.
2024 Feb; 912(?):168980. doi:
10.1016/j.scitotenv.2023.168980
. [PMID: 38040366] - Ruibai Li, Chengyuan Xue, Yiming Pan, Guangda Li, Ziming Huang, Jing Xu, Jingfang Zhang, Xinyi Chen, Li Hou. Research on different compound combinations of Realgar-Indigo naturalis formula to reverse acute promyelocytic leukemia arsenic resistance by regulating autophagy through mTOR pathway.
Journal of ethnopharmacology.
2024 Feb; ?(?):117778. doi:
10.1016/j.jep.2024.117778
. [PMID: 38310990] - Zhi-Hui Fu, Lin Zhou, An-Zheng Nie. [Effect and mechanism of Maxing Shigan Decoction on reducing inflammatory response in rats with cough variant asthma via TLR4/MyD88/NF-κB and p38 MAPK signaling pathways].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Feb; 49(4):1000-1006. doi:
10.19540/j.cnki.cjcmm.20230921.406
. [PMID: 38621907] - Fangfang Cai, Dangran Li, Yawen Xie, Xiaoyang Wang, Hailin Ma, Huangru Xu, Jian Cheng, Hongqin Zhuang, Zi-Chun Hua. Sulfide:quinone oxidoreductase alleviates ferroptosis in acute kidney injury via ameliorating mitochondrial dysfunction of renal tubular epithelial cells.
Redox biology.
2024 Feb; 69(?):102973. doi:
10.1016/j.redox.2023.102973
. [PMID: 38052107] - Mei-Mei Zhao, Lu-Di Li, Mi-Mi Yang, Lu Yao, Qi Wang, Ke-Wu Zeng. Identification of Skp1 as a target of mercury sulfide for neuroprotection.
Chemical communications (Cambridge, England).
2024 Feb; 60(11):1464-1467. doi:
10.1039/d3cc05141b
. [PMID: 38223951] - Cengiz Kaya, Ferhat Uğurlar, Muhammad Ashraf, Mohammed Nasser Alyemeni, Raf Dewil, Parvaiz Ahmad. Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide.
Journal of environmental management.
2024 Feb; 351(?):119759. doi:
10.1016/j.jenvman.2023.119759
. [PMID: 38091729] - Namgyu Lee, Sung Jin Park, Mike Lange, Tenzin Tseyang, Mihir B Doshi, Tae Yong Kim, Yoseb Song, Dong In Kim, Paul L Greer, James A Olzmann, Jessica B Spinelli, Dohoon Kim. Selenium reduction of ubiquinone via SQOR suppresses ferroptosis.
Nature metabolism.
2024 Feb; 6(2):343-358. doi:
10.1038/s42255-024-00974-4
. [PMID: 38351124] - Yuanhang Li, Jing Hua, Yanxiang Tao, Chiquan He. Invasion mechanism of Spartina alterniflora by regulating soil sulfur and iron cycling and microbial composition in the Jiuduansha Wetland.
Environmental science and pollution research international.
2024 Feb; 31(10):14775-14790. doi:
10.1007/s11356-024-32118-2
. [PMID: 38280165] - Ana Paula Bonato Wille, Ketlyn Pereira da Motta, Nathan Pinto Brites, Cristiane Luchese, Ricardo Frederico Schumacher, Ethel Antunes Wilhelm. Synthesis and investigation of new indole-containing vinyl sulfide derivatives: In silico and in vitro studies for potential therapeutic applications.
Chemistry & biodiversity.
2024 Feb; 21(2):e202301460. doi:
10.1002/cbdv.202301460
. [PMID: 38117615] - Awei Zhang, Hongfu He, Ronghua Wang, Zhongjie Shen, Zengxue Wu, Runjiang Song, Baoan Song. Synthesis, Bioactivities, and Antibacterial Mechanism of 5-(Thioether)-N-phenyl/benzyl-1,3,4-oxadiazole-2-carboxamide/amine Derivatives.
Journal of agricultural and food chemistry.
2024 Jan; 72(3):1444-1453. doi:
10.1021/acs.jafc.3c05816
. [PMID: 38206812] - Dominique T Ferguson, Equar Taka, Samia Messeha, Hernan Flores-Rozas, Sarah L Reed, Bryan V Redmond, Karam F A Soliman, Konan J W Kanga, Selina F Darling-Reed. The Garlic Compound, Diallyl Trisulfide, Attenuates Benzo[a]Pyrene-Induced Precancerous Effect through Its Antioxidant Effect, AhR Inhibition, and Increased DNA Repair in Human Breast Epithelial Cells.
Nutrients.
2024 Jan; 16(2):. doi:
10.3390/nu16020300
. [PMID: 38276538] - Jesus H Beltran-Ornelas, Diana L Silva-Velasco, Jorge Tapia-Martínez, Araceli Sánchez-López, Edgar Cano-Europa, Saúl Huerta de la Cruz, David Centurión. NaHS reverts chronic stress-induced cardiovascular alterations by reducing oxidative stress.
Journal of cardiovascular pharmacology.
2024 Jan; ?(?):. doi:
10.1097/fjc.0000000000001538
. [PMID: 38207007] - Surbhi Gupta, Prabhat Singh, Bhupesh Sharma. Montelukast Ameliorates 2K1C-Hypertension Induced Endothelial Dysfunction and Associated Vascular Dementia.
Current hypertension reviews.
2024 Jan; ?(?):. doi:
10.2174/0115734021276985231204092425
. [PMID: 38192137] - Merin Susanna James, Anurag Garg. Performance of electro-Fenton process for the treatment of synthetic sulphidic spent caustic waste stream generated from petroleum refineries.
Chemosphere.
2024 Jan; 346(?):140572. doi:
10.1016/j.chemosphere.2023.140572
. [PMID: 38303390] - Xingyu Zhu, Shuli Chen, Huanjin Liu, Xiaofang Hu, Chenxu Wei, Mengyu Guo, Yinting Yu, Chunmei Mei, Fugui Chen, Linyu Zheng, Weidong Li. Study on the removal effect and mechanism of calcined pyrite powder on Cr(VI).
International journal of phytoremediation.
2024; 26(4):448-458. doi:
10.1080/15226514.2023.2246591
. [PMID: 37565667] - Dangqiang Zhu, Na Li, Mengli Zhang, Yuqing Wang, Feng Li, Ting Hou. Hydrolysis enabled specific colorimetric assay of carbosulfan with sensitivity manipulation via metal-doped or metal-free carbon nanozyme.
Biosensors & bioelectronics.
2024 Jan; 243(?):115786. doi:
10.1016/j.bios.2023.115786
. [PMID: 37883845] - Eun-Young Nam, Su Hyun Choi, Ji Hye Hwang. Therapeutic Efficacy of Chinese Patent Medicine Containing Pyrite for Fractures: A Systematic Review and Meta-Analysis.
Medicina (Kaunas, Lithuania).
2023 Dec; 60(1):. doi:
10.3390/medicina60010076
. [PMID: 38256337] - Linfeng Wei, Jiyan Liu, Xingwang Hou, Weifang Chen, Yue Feng, Wenqian Kong, Yinyin Tang, Chuanji Zhong, Shuyan Zhang, Tian Wang, Ganghui Zhao, Suning Jiao, Guibin Jiang. Rice Seedlings and Microorganisms Mediate Biotransformation of Se in CdSe/ZnS Quantum Dots to Volatile Alkyl Selenides.
Environmental science & technology.
2023 Dec; 57(48):20261-20271. doi:
10.1021/acs.est.3c07094
. [PMID: 37992251] - Hanan H Hagar, Shaima M Alhazmi, Maha Arafah, Nervana Mustafa Bayoumy. Inhibition of sepsis-induced pancreatic injury by leukotriene receptor antagonism via modulation of oxidative injury, and downregulation of inflammatory markers in experimental rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Nov; ?(?):. doi:
10.1007/s00210-023-02812-y
. [PMID: 37962585] - Milica Pavlicevic, Luca Pagano, Marco Villani, Andrea Zappettini, Laura Paesano, Urbana Bonas, Nelson Marmiroli, Marta Marmiroli. Comparison of effect of CdS QD and ZnS QD and their corresponding salts on growth, chlorophyll content and antioxidative capacity of tomato.
International journal of phytoremediation.
2023 Oct; ?(?):1-12. doi:
10.1080/15226514.2023.2270692
. [PMID: 37886884] - Zijun Wu, Uladzimir Barayeu, Danny Schilling, Tobias P Dick, Derek A Pratt. Emergence of (hydro)persulfides as suppressors of lipid peroxidation and ferroptotic cell death.
Current opinion in chemical biology.
2023 10; 76(?):102353. doi:
10.1016/j.cbpa.2023.102353
. [PMID: 37356334] - Tianqi Wang, Guomei Zhong, Honglei Liu, Huaiwei Liu, Yongzhen Xia, Luying Xun. A common mechanism for rapid transfer of zero-valent sulfur between microbial cells.
The Science of the total environment.
2023 Sep; 891(?):164461. doi:
10.1016/j.scitotenv.2023.164461
. [PMID: 37247735] - Yabei Qiao, Dandi Hou, Zhi Lin, Shuai Wei, Jiuzhou Chen, Jiahao Li, Jie Zhao, Kuan Xu, Lingli Lu, Shengke Tian. Sulfur fertilization and water management ensure phytoremediation coupled with argo-production by mediating rhizosphere microbiota in the Oryza sativa L.-Sedum alfredii Hance rotation system.
Journal of hazardous materials.
2023 09; 457(?):131686. doi:
10.1016/j.jhazmat.2023.131686
. [PMID: 37270958] - Leihong Zhang, Yirong Zhang, Jindong Li, Yanli Qi, Li Li, Kaikai Qin, Yongyue Lu, Chenglan Liu. Effect of fertilization on the degradation and enantioselectivity of fipronil in soil.
Pest management science.
2023 Aug; ?(?):. doi:
10.1002/ps.7737
. [PMID: 37615248] - Ana Jurado-Flores, Angeles Aroca, Luis C Romero, Cecilia Gotor. Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis.
Journal of experimental botany.
2023 08; 74(15):4654-4669. doi:
10.1093/jxb/erad165
. [PMID: 37148339] - Bichong Luo, Jihai Cai, Yutong Xiong, Xu Ding, Xiaoyun Li, Shanshan Li, Changliang Xu, Alexander Yu Vasil'kov, Yun Bai, Xiaoying Wang. Quaternized chitosan coated copper sulfide nanozyme with peroxidase-like activity for synergistic antibacteria and promoting infected wound healing.
International journal of biological macromolecules.
2023 Aug; 246(?):125651. doi:
10.1016/j.ijbiomac.2023.125651
. [PMID: 37399873] - Esrafil Mansouri, Zeinab Shafiei Seifabadi, Nastaran Azarbarz, Maasoumeh Zare Moaiedi. Effects of sodium hydrosulfide (NaHS) on cisplatin-induced hepatic and cardiac toxicity.
Drug and chemical toxicology.
2023 Aug; ?(?):1-8. doi:
10.1080/01480545.2023.2242008
. [PMID: 37553904] - Stephen Lindahl, Ming Xian. Recent development of polysulfides: Chemistry and biological applications.
Current opinion in chemical biology.
2023 08; 75(?):102325. doi:
10.1016/j.cbpa.2023.102325
. [PMID: 37216872] - Murugesan Sindhu, Vallavan Rajkumar, Coimbatore Alagubrahmam Annapoorani, Chinnappan Gunasekaran, Malaichamy Kannan. Nanoencapsulation of garlic essential oil using chitosan nanopolymer and its antifungal and anti-aflatoxin B1 efficacy in vitro and in situ.
International journal of biological macromolecules.
2023 Jul; 243(?):125160. doi:
10.1016/j.ijbiomac.2023.125160
. [PMID: 37271266] - Rongzhu Wen, Wengui Duan, Guishan Lin, Baoyu Li, Zhaolei Zhang, Chuwen Liu. Synthesis, Antifungal Activity, and Molecular Simulation Study of L-Carvone-Derived 1,3,4-Oxadiazole-Thioether Compounds.
Chemistry & biodiversity.
2023 Jul; 20(7):e202300794. doi:
10.1002/cbdv.202300794
. [PMID: 37382275] - Haixiao Guo, Siru Liu, Yufen Wang, Yiwen Wang, Jiaqi Hou, Tingting Zhu, Yiwen Liu. Reduced sulfide and methane in rising main sewer via calcium peroxide dosing: Insights from microbial physiological characteristics, metabolisms and community traits.
Journal of hazardous materials.
2023 Jun; 451(?):131138. doi:
10.1016/j.jhazmat.2023.131138
. [PMID: 36917912] - Jisui Tan, Xiaohong Zhou. Detection of Retinoic Acid-Active Chemicals in Diverse Sample Matrices Via a Quantum Dots-Based Nuclear Receptor Fluorescence Probe-Mediated Biosensor.
Analytical chemistry.
2023 May; ?(?):. doi:
10.1021/acs.analchem.3c00971
. [PMID: 37158541] - Kinga Oravetz, Adelina-Violeta Todea, Ovidiu Balacescu, Daniel Cruceriu, Elena Rakosy-Tican. Potential antitumor activity of garlic against colorectal cancer: focus on the molecular mechanisms of action.
European journal of nutrition.
2023 May; ?(?):. doi:
10.1007/s00394-023-03166-0
. [PMID: 37140645] - Jing Liu, Ming-Yi Sun, Hui-Min Wu, Hu-Lin-Yue Peng, Hua-Ting Huang, Ting-Ting Fu, Xiao-Xu Dong, Xing-Bin Yin, Chang-Hai Qu, Jian Ni. [Arsenic speciation and valence].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 May; 48(9):2396-2405. doi:
10.19540/j.cnki.cjcmm.20230213.601
. [PMID: 37282869] - Margarita García-Calderón, Thibaut Vignane, Milos R Filipovic, M Teresa Ruiz, Luis C Romero, Antonio J Márquez, Cecilia Gotor, Angeles Aroca. Persulfidation protects from oxidative stress under nonphotorespiratory conditions in Arabidopsis.
The New phytologist.
2023 05; 238(4):1431-1445. doi:
10.1111/nph.18838
. [PMID: 36840421] - Ye Zhao, Han Wang, Haona Wang, Hui Liu, Yanying Zhang, Jianwei Zhang, Yongrui Pi, Pei Yang, Qing Wang. Sulfide causes histological damage, oxidative stress, metabolic disorders and gut microbiota dysbiosis in juvenile sea cucumber Apostichopus japonicus Selenka.
Aquatic toxicology (Amsterdam, Netherlands).
2023 May; 258(?):106439. doi:
10.1016/j.aquatox.2023.106439
. [PMID: 36965428] - Ming-Hao Shang, Xue-Wen Sun, Hai-Lian Wang, Hao-Ran Li, Jia-Shuang Zhang, Li-Zhong Wang, Shu-Jing Yu, Xiao Zhang, Li-Xia Xiong, Yong-Hong Li, Cong-Wei Niu, Jian-Guo Wang. Facile synthesis, crystal structure, quantum calculation, and biological evaluations of novel selenenyl sulfide compounds as potential agrochemicals.
Pest management science.
2023 May; 79(5):1885-1896. doi:
10.1002/ps.7382
. [PMID: 36700288] - Kristen Van Gelder, Edmar R Oliveira-Filho, Jorge Donato García-García, You Hu, Steven D Bruner, Andrew D Hanson. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases.
ACS synthetic biology.
2023 04; 12(4):963-970. doi:
10.1021/acssynbio.2c00512
. [PMID: 36920242] - Claudia Sanfilippo, Federica Cernuto, Angela Patti. Expanding the Use of Peroxygenase from Oat Flour in Organic Synthesis: Enantioselective Oxidation of Sulfides.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087464
. [PMID: 37108626] - Kathryn L Van Alstyne, Jennifer K Butler, Neal Smith. Airborne dimethyl sulfide (DMS) cues dimethylsulfoniopropionate (DMSP) increases in the intertidal green alga Ulva fenestrata.
Scientific reports.
2023 Mar; 13(1):4298. doi:
10.1038/s41598-023-30881-9
. [PMID: 36922620] - Veronika Šamšulová, Mária Šedivá, Juraj Kóňa, Jaroslav Klaudiny, Monika Poláková. A Comparison of the Antibacterial Efficacy of Carbohydrate Lipid-like (Thio)Ether, Sulfone, and Ester Derivatives against Paenibacillus larvae.
Molecules (Basel, Switzerland).
2023 Mar; 28(6):. doi:
10.3390/molecules28062516
. [PMID: 36985490] - Changkun Li, Youhua Liu, Xiaoli Ren, Yanni Tan, Linhong Jin, Xia Zhou. Design, Synthesis and Bioactivity of Novel Pyrimidine Sulfonate Esters Containing Thioether Moiety.
International journal of molecular sciences.
2023 Feb; 24(5):. doi:
10.3390/ijms24054691
. [PMID: 36902121] - Anindita De, Parikshit Roychowdhury, Nihar Ranjan Bhuyan, Young Tag Ko, Sachin Kumar Singh, Kamal Dua, Gowthamarajan Kuppusamy. Folic Acid Functionalized Diallyl Trisulfide-Solid Lipid Nanoparticles for Targeting Triple Negative Breast Cancer.
Molecules (Basel, Switzerland).
2023 Feb; 28(3):. doi:
10.3390/molecules28031393
. [PMID: 36771058] - Nathalie Pradel, Marie-Laure Fardeau, Boyke Bunk, Cathrin Spröer, Christian Boedeker, Jacqueline Wolf, Meina Neumann-Schaal, Michael Pester, Stefan Spring. Aminithiophilus ramosus gen. nov., sp. nov., a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture, and taxonomic revision of the family Synergistaceae.
International journal of systematic and evolutionary microbiology.
2023 Feb; 73(2):. doi:
10.1099/ijsem.0.005691
. [PMID: 36749697] - Wei Weng, Wenze Zhang, Hongfu Lin, Xiaopeng Chi, Shuiping Zhong. Fixing sulfur dioxide by feeding calcine oxide into the rotary volatilization kiln in zinc smelting plant.
Environmental science and pollution research international.
2023 Jan; ?(?):. doi:
10.1007/s11356-023-25164-9
. [PMID: 36662438] - Varinder Khepar, Anjali Sidhu, Anju Bala Sharma. Nanomaterized zinc sulfide-meerschaum biomatrix efficiently suppressed Fusarium verticilloides with augmented rice seed quality benefits during storage.
Pest management science.
2023 Jan; 79(1):244-256. doi:
10.1002/ps.7194
. [PMID: 36131552] - Mala Thapa, Raghunath Sadhukhan, Abhishek Mukherjee, Prasanta Kumar Biswas. Effects of nZnS vs. nZnO and ZnCl2 on mungbean [Vigna radiata (L.) R. Wilczek] plant and Bradyrhizobium symbiosis: A life cycle study.
NanoImpact.
2023 01; 29(?):100440. doi:
10.1016/j.impact.2022.100440
. [PMID: 36442836] - Harald Hasler-Sheetal. Detrimental impact of sulfide on the seagrass Zostera marina in dark hypoxia.
PloS one.
2023; 18(12):e0295450. doi:
10.1371/journal.pone.0295450
. [PMID: 38060512] - Jingchao He, Karna Ramachandraiah, Tao Huang, Ting Yuan, Xinxin Liu, Haijun Zhang, Fei Ke. Core-shell structured hollow copper sulfide@metal-organic framework for magnetic resonance imaging guided photothermal therapy in second near-infrared biological window.
Biochemical and biophysical research communications.
2023 01; 638(?):51-57. doi:
10.1016/j.bbrc.2022.11.036
. [PMID: 36436342] - Si-Ping Xiong, Hai-Jian Sun, Xu Cao, Zhi-Yuan Wu, Meng-Yuan Zhu, Lei Cao, Xiao-Wei Nie, Jin-Song Bian. Polysulfide Protects Against Diabetic Cardiomyopathy Through Sulfhydration of Peroxisome Proliferator-Activated Receptor-γ and Sirtuin 3.
Antioxidants & redox signaling.
2023 01; 38(1-3):1-17. doi:
10.1089/ars.2022.0024
. [PMID: 36322712] - Chen Wang, Lei Bi, Jingzhang Liu, Bang Huang, Fengbang Wang, Yichang Zhang, Chongchao Yao, Gang Pan, Maoyong Song. Microalgae-derived carbon quantum dots mediated formation of metal sulfide nano-adsorbents with exceptional cadmium removal performance.
Journal of colloid and interface science.
2023 Jan; 629(Pt A):994-1002. doi:
10.1016/j.jcis.2022.08.188
. [PMID: 36152623] - Jin-Pin Liu, Si-Yu Cen, Zian Xue, Tian-Xiang Wang, Yun Gao, Jia Zheng, Cheng Zhang, Junchi Hu, Shenyou Nie, Yue Xiong, Kun-Liang Guan, Hai-Xin Yuan. A Class of Disulfide Compounds Suppresses Ferroptosis by Stabilizing GPX4.
ACS chemical biology.
2022 12; 17(12):3389-3406. doi:
10.1021/acschembio.2c00445
. [PMID: 36446024] - Min Wang, Wei Zhang, Junying Zhao, Zirou Yang, Xiaoyu Guo, Hongbing Ji. Distinct structural strategies with similar functional responses of abundant and rare subcommunities regarding heavy metal pollution in the Beiyun river basin.
Chemosphere.
2022 Dec; 309(Pt 1):136659. doi:
10.1016/j.chemosphere.2022.136659
. [PMID: 36202374] - Yonghong Han, Juan Tao, Adnan Khan, Rizwan Ullah, Nisar Ali, Nauman Ali, Sumeet Malik, Chunhao Yu, Yong Yang, Muhammad Bilal. Design and fabrication of chitosan cross-linked bismuth sulfide nanoparticles for sequestration of mercury in river water samples.
Environmental research.
2022 12; 215(Pt 3):113978. doi:
10.1016/j.envres.2022.113978
. [PMID: 35985490] - Hassay Lizeth Medina-Díaz, Irene Acosta, Martín Muñoz, Francisco Javier López Bellido, José Villaseñor, Javier Llanos, Luis Rodríguez, Francisco Jesús Fernández-Morales. A classical modelling of abandoned mine tailings' bioleaching by an autochthonous microbial culture.
Journal of environmental management.
2022 Dec; 323(?):116251. doi:
10.1016/j.jenvman.2022.116251
. [PMID: 36261963] - Tianwei Hao, Weiqi Xue, Qian Zeng, Rulong Liu, Guanghao Chen. Microbial communities and biosynthetic pathways for the production of sulfated polysaccharides in the activated sludge system.
The Science of the total environment.
2022 Dec; 850(?):157950. doi:
10.1016/j.scitotenv.2022.157950
. [PMID: 35961395] - Phuong Minh Nguyen, Muhammad Arslan, Uwe Kappelmeyer, Ines Mäusezahl, Arndt Wiessner, Jochen A Müller. Spatial characterization of microbial sulfur cycling in horizontal-flow constructed wetland models.
Chemosphere.
2022 Dec; 309(Pt 1):136605. doi:
10.1016/j.chemosphere.2022.136605
. [PMID: 36179921] - Maede Hasanpour, Hossein Safari, Amir Hooshang Mohammadpour, Milad Iranshahy, Mohammad Javad Dehghan Nayyeri, Faegheh Farhadi, Bahareh Emami, Mehrdad Iranshahi. Efficacy of Covexir® (Ferula foetida oleo-gum) treatment in symptomatic improvement of patients with mild to moderate COVID-19: A randomized, double-blind, placebo-controlled trial.
Phytotherapy research : PTR.
2022 Dec; 36(12):4504-4515. doi:
10.1002/ptr.7567
. [PMID: 35896167] - Dexin Jin, Yihan Lv, Dongyang He, Dongmei Zhang, Yue Liu, Tingting Zhang, Fangyuan Cheng, Ya-Nan Zhang, Jiaqiong Sun, Jiao Qu. Photocatalytic degradation of COVID-19 related drug arbidol hydrochloride by Ti3C2 MXene/supramolecular g-C3N4 Schottky junction photocatalyst.
Chemosphere.
2022 Dec; 308(Pt 3):136461. doi:
10.1016/j.chemosphere.2022.136461
. [PMID: 36122752] - Nibin Shi, Xin Yan, Adeyemi S Adeleye, Xuxiang Zhang, Dongmei Zhou, Lijuan Zhao. Effects of WS2 Nanosheets on N2-fixing Cyanobacteria: ROS overproduction, cell membrane damage, and cell metabolic reprogramming.
The Science of the total environment.
2022 Nov; 849(?):157706. doi:
10.1016/j.scitotenv.2022.157706
. [PMID: 35908696] - Juan Wu, Dongqing Yang, Ziwei Song, Qin Qian, Jianguo Dai, Ju Dong. Target RNA expression omics approach to reveal the liver detoxification effect induced by Chinese medicine prescription Niu Huang Jie Du against realgar overexposure to mice.
Journal of ethnopharmacology.
2022 Nov; 298(?):115610. doi:
10.1016/j.jep.2022.115610
. [PMID: 35973632] - Cengiz Kaya, Ferhat Ugurlar, Muhammed Ashraf, Mohamed A El-Sheikh, Andrzej Bajguz, Parvaiz Ahmad. The participation of nitric oxide in hydrogen sulphide-mediated chromium tolerance in pepper (Capsicum annuum L) plants by modulating subcellular distribution of chromium and the ascorbate-glutathione cycle.
Environmental pollution (Barking, Essex : 1987).
2022 Nov; 313(?):120229. doi:
10.1016/j.envpol.2022.120229
. [PMID: 36152705] - Sarun Thongnok, Wilailak Siripornadulsil, Surasak Siripornadulsil. Responses to arsenic stress of rice varieties coinoculated with the heavy metal-resistant and rice growth-promoting bacteria Pseudomonas stutzeri and Cupriavidus taiwanensis.
Plant physiology and biochemistry : PPB.
2022 Nov; 191(?):42-54. doi:
10.1016/j.plaphy.2022.09.014
. [PMID: 36182828] - Yi-Hsuan Ma, Mei-Hsuan Wu, Li-Yu Chung, Chuan-Min Yen, Yung-Shun Juan, Rong-Jyh Lin. Cestocidal activities of bioactive garlic compounds against Hymenolepis nana.
Acta tropica.
2022 Nov; 235(?):106580. doi:
10.1016/j.actatropica.2022.106580
. [PMID: 35908577] - Sheng Zhang, Shuai Cao, Heng Zhou, Limin Li, Qing Hu, Xiuhong Mao, Shen Ji. Realgar-induced nephrotoxicity via ferroptosis in mice.
Journal of applied toxicology : JAT.
2022 11; 42(11):1843-1853. doi:
10.1002/jat.4362
. [PMID: 35803278] - Xunan Yang, Mi Zhong, Jia Pu, Congzhu Liu, Huan Luo, Meiying Xu. Risk control and assessment of sulfide-rich sediment remediation by controlled-release calcium nitrate.
Water research.
2022 Nov; 226(?):119230. doi:
10.1016/j.watres.2022.119230
. [PMID: 36270148] - Shiwei Yan, Jianhao Yang, Youbin Si, Xianjin Tang, Youhua Ma, Wenling Ye. Arsenic and cadmium bioavailability to rice (Oryza sativa L.) plant in paddy soil: Influence of sulfate application.
Chemosphere.
2022 Nov; 307(Pt 1):135641. doi:
10.1016/j.chemosphere.2022.135641
. [PMID: 35817182] - Yanzhou Hu, Jia Xu, Ruxin Gao, Ye Xu, Bingxin Huangfu, Charles Asakiya, Xianghui Huang, Feng Zhang, Kunlun Huang, Xiaoyun He, Yunbo Luo. Diallyl Trisulfide Prevents Adipogenesis and Lipogenesis by Regulating the Transcriptional Activation Function of KLF15 on PPARγ to Ameliorate Obesity.
Molecular nutrition & food research.
2022 11; 66(22):e2200173. doi:
10.1002/mnfr.202200173
. [PMID: 35983694] - Muthaiah Annalakshmi, T S T Balamurugan, Sakthivel Kumaravel, Shen-Ming Chen, Ju-Liang He. Facile hydrothermal synthesis of manganese sulfide nanoelectrocatalyst for high sensitive detection of Bisphenol A in food and eco-samples.
Food chemistry.
2022 Nov; 393(?):133316. doi:
10.1016/j.foodchem.2022.133316
. [PMID: 35688093] - Alexander A Ksenofontov, Pavel S Bocharov, Elena V Antina, Oksana G Shevchenko, Aleksandr V Samorodov, Ilmir R Gilfanov, Roman S Pavelyev, Olga V Ostolopovskaya, Valeriya A Startseva, Inna V Fedyunina, Zulfiya R Azizova, Salavat I Gaysin, Svetlana V Pestova, Evgeniy S Izmest'ev, Svetlana A Rubtsova, Mohammed A Khelkhal, Liliya E Nikitina. Thioterpenoids as Potential Antithrombotic Drugs: Molecular Docking, Antiaggregant, Anticoagulant and Antioxidant Activities.
Biomolecules.
2022 10; 12(11):. doi:
10.3390/biom12111599
. [PMID: 36358949] - Jenny Beebe, Sophia Josephraj, Chao J Wang, Jacob Danielson, Qingbin Cui, Caoqinglong Huang, Lincoln Barlow, Ryan H Zhang, Taolan Zhang, Harikrishna Nakshatri, Zizheng Dong, Xiaohong Li, Jing-Yuan Liu, Jian-Ting Zhang. Therapeutic Activity of the Lansoprazole Metabolite 5-Hydroxy Lansoprazole Sulfide in Triple-Negative Breast Cancer by Inhibiting the Enoyl Reductase of Fatty Acid Synthase.
Journal of medicinal chemistry.
2022 10; 65(20):13681-13691. doi:
10.1021/acs.jmedchem.2c00642
. [PMID: 36257066] - Xiaojing Zhu, Rongxin Lu, Genrong Zhang, Ling Fan, Yongjiu Zhan, Guoxin Chen, Liang Zhou. Diallyl Trisulfide attenuates alcohol-induced hepatocyte pyroptosis via elevation of hydrogen sulfide.
Bioscience, biotechnology, and biochemistry.
2022 Oct; 86(11):1552-1561. doi:
10.1093/bbb/zbac149
. [PMID: 36073357] - Ahmed M Fleifel, Ayman A Soubh, Dalaal M Abdallah, Kawkab A Ahmed, Hanan S El-Abhar. Preferential effect of Montelukast on Dapagliflozin: Modulation of IRS-1/AKT/GLUT4 and ER stress response elements improves insulin sensitivity in soleus muscle of a type-2 diabetic rat model.
Life sciences.
2022 Oct; 307(?):120865. doi:
10.1016/j.lfs.2022.120865
. [PMID: 35934057] - Zhi-Kun Geng, Lin Ma, Yu-Lei Rong, Wan-Jie Li, Gai-Fang Yao, Hua Zhang, Kang-Di Hu. A Hydrogen-Sulfide-Repressed Methionine Synthase SlMS1 Acts as a Positive Regulator for Fruit Ripening in Tomato.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012239
. [PMID: 36293095] - Huiqi Yeo, Dimitrios P Balagiannis, Jean H Koek, Jane K Parker. Comparison of Odorants in Beef and Chicken Broth-Focus on Thiazoles and Thiazolines.
Molecules (Basel, Switzerland).
2022 Oct; 27(19):. doi:
10.3390/molecules27196712
. [PMID: 36235248] - Yeseul Park, Zohar Eyal, Péter Pekker, Daniel M Chevrier, Christopher T Lefèvre, Pascal Arnoux, Jean Armengaud, Caroline L Monteil, Assaf Gal, Mihály Pósfai, Damien Faivre. Periplasmic Bacterial Biomineralization of Copper Sulfide Nanoparticles.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2022 Oct; 9(28):e2203444. doi:
10.1002/advs.202203444
. [PMID: 35975419] - Rabia Cherfouh, Yves Lucas, Arezki Derridj, Patricia Merdy. Metal speciation in sludges: a tool to evaluate risks of land application and to track heavy metal contamination in sewage network.
Environmental science and pollution research international.
2022 Oct; 29(46):70396-70407. doi:
10.1007/s11356-022-20868-w
. [PMID: 35589893] - Jin Wang, Yi Wang, Dun Zhang, Wenyu Ren, Zhanxu Yang. Discovering the direct evidence of photocatalytic sterilization mechanism on bimetallic sulfides heterostructures.
Journal of colloid and interface science.
2022 Oct; 623(?):182-195. doi:
10.1016/j.jcis.2022.05.019
. [PMID: 35576649] - Zonghong Li, Ruiming Zhang, Xuewei Yin, Nana Li, Siyuan Cui, Teng Wang, Xing Tan, Mingyue Shen, Yun Guo, Jinxin Wang, Dadong Guo, Ruirong Xu. Realgar (As4S4), a traditional Chinese medicine, induces acute promyelocytic leukemia cell death via the Bcl-2/Bax/Cyt-C/AIF signaling pathway in vitro.
Aging.
2022 Sep; 14(17):7109-7125. doi:
10.18632/aging.204281
. [PMID: 36098742] - Anton Misak, Marian Grman, Lenka Tomasova, Ondrej Makara, Miroslav Chovanec, Karol Ondrias. Extract of Acanthopanax senticosus and Its Components Interacting with Sulfide, Cysteine and Glutathione Increase Their Antioxidant Potencies and Inhibit Polysulfide-Induced Cleavage of Plasmid DNA.
Molecules (Basel, Switzerland).
2022 Sep; 27(17):. doi:
10.3390/molecules27175735
. [PMID: 36080497] - Shibao Chen, Li Chen, Duo Wang, Meng Wang. Low pe+pH induces inhibition of cadmium sulfide precipitation by methanogenesis in paddy soil.
Journal of hazardous materials.
2022 09; 437(?):129297. doi:
10.1016/j.jhazmat.2022.129297
. [PMID: 35717818] - Si-Min Xu, Ze-Qi Dai, Xue Wu, Miao-Miao Li, Xing Liao. [Four Chinese patent medicines for regulating stomach for functional dyspepsia: a rapid health technology assessment].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(17):4778-4788. doi:
10.19540/j.cnki.cjcmm.20220520.501
. [PMID: 36164885] - Angeles Aroca, Cecilia Gotor. Hydrogen sulfide action in the regulation of plant autophagy.
FEBS letters.
2022 09; 596(17):2186-2197. doi:
10.1002/1873-3468.14433
. [PMID: 35735749] - Takayuki Kaneko, Yuichiro Mita, Kanako Nozawa-Kumada, Masana Yazaki, Mieko Arisawa, Etsuo Niki, Noriko Noguchi, Yoshiro Saito. Antioxidant action of persulfides and polysulfides against free radical-mediated lipid peroxidation.
Free radical research.
2022 Sep; 56(9-10):677-690. doi:
10.1080/10715762.2023.2165918
. [PMID: 36630595]