Exact Mass: 298.0993744
Exact Mass Matches: 298.0993744
Found 500 metabolites which its exact mass value is equals to given mass value 298.0993744
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Coumafuryl
D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins
Picein
Picein is a glycoside. Picein is a natural product found in Salix candida, Halocarpus biformis, and other organisms with data available. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1]. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1].
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
Enterolactone
Enterolactone (CAS: 78473-71-9) is a mammalian lignan that has a similar biphenolic structure to lignans from plants. Lignans are compounds with estrogenic properties and are probably the most important source of phytoestrogens in western diets. Mammalian lignans are formed from precursors that are contained mainly in vegetables, whole grain products, and berries, via the action of intestinal microflora. Enterolactone is produced in the colon by the action of bacteria on secoisolariciresinol, matairesinol, and its glycosides. Secoisolariciresinol is converted to enterodiol which is subsequently converted to enterolactone as it passes through the colon. Matairesinol is converted directly to enterolactone. Enterolactone has been shown to possess weakly estrogenic and antiestrogenic activities, and it has been suggested that the high production of this antiestrogenic mammalian lignans in the gut may serve to protect against breast cancer in women and prostate cancer in men; however epidemiological evidence to date is conflicting (PMID: 16168401, 12270221, 11216511, 12107024). Enterolactone is a biomarker for the consumption of soybeans and other soy products. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens
Sayanedin
Isolated from pods of Pisum sativum (pea). Sayanedin is found in pulses and common pea. Sayanedin is found in common pea. Sayanedin is isolated from pods of Pisum sativum (pea
Spirolaurenone
A spirocyclic sesquiterpenoid that is isolated from the red alga Laurencia glandulifera.
Antibiotic PS 5
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D013845 - Thienamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
Astra 1397
C17H18N2OS (298.11397780000004)
A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AC - Synthetic antispasmodics, amides with tertiary amines
castanin
A 4-methoxyisoflavone that is isoflavone substituted by methoxy groups at positions 6 and 4 and a hydroxy group at position 7.
7-Methylguanosine
7-methylguanosine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. 7-Methylguanosine is a substrate for purine-nucleoside phosphorylase and Eukaryotic translation initiation factor 4E. (PMID: 3506820, 17044778, 17264127, 16799933) [HMDB] 7-methylguanosine is an endogenous methylated nucleoside found in human fluids; methylated purine bases are present in higher amounts in tumor-bearing patients compared to healthy controls.DNA hypermethylation is a common finding in malignant cells and has been explored as a therapeutic target for hypomethylating agents. When chemical bonds to DNA, the DNA becomes damaged and proper and complete replication cannot occur to make the normal intended cell. A DNA adduct is an abnormal piece of DNA covalently-bonded to a cancer-causing chemical. This has shown to be the start of a cancerous cell, or carcinogenesis. DNA adducts in scientific experiments are used as bio-markers and as such are themselves measured to reflect quantitatively, for comparison, the amount of cancer in the subject. 7-Methylguanosine is a substrate for purine-nucleoside phosphorylase and Eukaryotic translation initiation factor 4E. (PMID:3506820, 17044778, 17264127, 16799933).
Amlexanox
Amlexanox is an antiallergic drug, clinically effective for atopic diseases, especially allergic asthma and rhinitis. Amlexanox as a topical paste is a well tolerated treatment of recurrent aphthous ulcers. Recurrent aphthous ulcer (RAU) is the most prevalent oral mucosal disease in humans, estimated to affect between 5\\% and 50\\% of the general population. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist R - Respiratory system > R03 - Drugs for obstructive airway diseases D018926 - Anti-Allergic Agents
3-(4-hydroxyphenyl)-5,7-dimethoxy-4H-chromen-4-one
(+)-Ligballinol
(+)-ligballinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-ligballinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-ligballinol can be found in pulses, which makes (+)-ligballinol a potential biomarker for the consumption of this food product. (+)-Ligballinol is found in pulses. (+)-Ligballinol is a stress metabolite of cell cultures of Vigna angularis (azuki bean
2-(3-hydroxy-4,5-dimethoxyphenyl)-4H-chromen-4-one
1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one
1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one is found in herbs and spices. 1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one is isolated from Myrica gale (bog myrtle). Isolated from Myrica gale (bog myrtle). 1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one is found in herbs and spices.
3-(3,4-dimethoxyphenyl)-7-hydroxy-4H-chromen-4-one
Alfalone
Alfalone is found in alfalfa. Alfalone is isolated from alfalfa callus tissue. Isolated from alfalfa callus tissue. Alfalone is found in alfalfa and pulses.
7-Hydroxy-5-methoxy-6,8-dimethylflavanone
7-Hydroxy-5-methoxy-6,8-dimethylflavanone is found in fruits. 7-Hydroxy-5-methoxy-6,8-dimethylflavanone is a constituent of Eugenia javanica (Java apple)
8-Deoxy-11-hydroxy-13-chlorogrosheimin
8-Deoxy-11-hydroxy-13-chlorogrosheimin is found in green vegetables. 8-Deoxy-11-hydroxy-13-chlorogrosheimin is a constituent of Cynara scolymus (artichoke). Constituent of Cynara scolymus (artichoke). 8-Deoxy-11-hydroxy-13-chlorogrosheimin is found in green vegetables.
4',5-Dihydroxy-7-methoxy-6-methylflavone
4,5-Dihydroxy-7-methoxy-6-methylflavone is found in beverages. 4,5-Dihydroxy-7-methoxy-6-methylflavone is isolated from Gaultheria procumbens (wintergreen
5,7-Dimethoxy-6-methylflavanone
5,7-Dimethoxy-6-methylflavanone is found in tea. 5,7-Dimethoxy-6-methylflavanone is a constituent of Leptospermum scoparium (red tea). Constituent of Leptospermum scoparium (red tea). 5,7-Dimethoxy-6-methylflavanone is found in tea.
7C-aglycone
7C-aglycone is one of the two major aglycone urinary water-soluble metabolites of Phylloquinone (Vitamin K1) and menaquinones (vitamin K2), usually excreted as glucuronide conjugates; their structure suggests that they are formed by an oxidative degradation of the phytyl side chain involving enzymes of omega- and beta-oxidation. Newborn infants as a group, are known to have precariously low vitamin K stores and are routinely given vitamin K prophylaxis at birth. (PMIDs 7306367, 4833371, 15722567) [HMDB] 7C-aglycone is one of the two major aglycone urinary water-soluble metabolites of Phylloquinone (Vitamin K1) and menaquinones (vitamin K2), usually excreted as glucuronide conjugates; their structure suggests that they are formed by an oxidative degradation of the phytyl side chain involving enzymes of omega- and beta-oxidation. Newborn infants as a group, are known to have precariously low vitamin K stores and are routinely given vitamin K prophylaxis at birth. (PMIDs 7306367, 4833371, 15722567).
2-Phenylethanol glucuronide
2-Phenylethanol glucuronide is a natural human metabolite of 2-phenylethanol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. [HMDB] 2-Phenylethanol glucuronide is a natural human metabolite of 2-phenylethanol generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys.
LysoPA(8:0/0:0)
LysoPA(8:0/0:0) is a lysophosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. Lysophosphatidic acids can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. Fatty acids containing 16 and 18 carbons are the most common. LysoPA(8:0/0:0), in particular, consists of one chain of caprylic acid at the C-1 position. Lysophosphatidic acid is the simplest possible glycerophospholipid. It is the biosynthetic precursor of phosphatidic acid. Although it is present at very low levels only in animal tissues, it is extremely important biologically, influencing many biochemical processes.
4-Ethylphenol glucuronide
4-Ethylphenol glucuronide belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-fructose, and L rhamnose. 4-Ethylphenol glucuronide is a uremic toxin (PMID: 30087103).
(E)-3-(2,3-Dimethoxyphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one
2-[6-(4-Chlorophenoxy)hexyl]oxirane-2-carboxylic acid
1H-Pyrrole-2,5-dione, 1-[7-(dimethylamino)-4-methyl-2-oxo-2H-1-benzopyran-3-yl]-
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
8-Aminoguanosine
6-Isopropoxy-9-oxoxanthene-2-carboxylic acid
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists
Ciclazindol
C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent
2,3,4,5-Tetrahydroxy-6-(1,2,3,4-tetrahydroxybutyl)oxane-2-carbaldehyde
(5R,6R)-3-(2-Acetamidoethylsulfanyl)-6-ethyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid
Chakanoside I
Chakanoside i is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Chakanoside i is soluble (in water) and a very weakly acidic compound (based on its pKa). Chakanoside i can be found in tea, which makes chakanoside i a potential biomarker for the consumption of this food product.
Nicotinamide ascorbate
It is used as a food additive
3'-deamino-3'-oxonicotianamine
3-deamino-3-oxonicotianamine is practically insoluble (in water) and a moderately acidic compound (based on its pKa). 3-deamino-3-oxonicotianamine can be found in a number of food items such as daikon radish, nutmeg, greenthread tea, and small-leaf linden, which makes 3-deamino-3-oxonicotianamine a potential biomarker for the consumption of these food products.
Sitostanol-beta
Moslosooflavone
5-Hydroxy-7,8-dimethoxyflavone is a natural product found in Uvaria rufa, Andrographis paniculata, and other organisms with data available. Moslosooflavone is a flavonoid isolated from Andrographis paniculata. Moslosooflavone has an anti-hypoxia and anti-inflammatory activities[1]. Moslosooflavone is a flavonoid isolated from Andrographis paniculata. Moslosooflavone has an anti-hypoxia and anti-inflammatory activities[1].
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
Mosloflavone
Mosloflavone is a member of flavonoids and an ether. Mosloflavone is a natural product found in Desmos dumosus, Phonus arborescens, and other organisms with data available. Mosloflavone is a flavonoid isolated from Scutellaria baicalensis Georgi with ?anti-EV71 activity. Mosloflavone? inhibits VP2 virus replication and protein expression during the initial stage of virus infection and inhibits viral VP2 capsid protein synthesis. Mosloflavone is a promising biocide and inhibits P. aeruginosa virulence and biofilm formation. Mosloflavone is a flavonoid isolated from Scutellaria baicalensis Georgi with ?anti-EV71 activity. Mosloflavone? inhibits VP2 virus replication and protein expression during the initial stage of virus infection and inhibits viral VP2 capsid protein synthesis. Mosloflavone is a promising biocide and inhibits P. aeruginosa virulence and biofilm formation.
Infectocaryone
[3R-(3alph,3aalpha,7alpha,7aalpha)]-7-Dimethyl-3,7a-bis(acetyloxy)hexahydro-3a 1,4-isobenzofurandione
2,8-Dimethoxy-7-hydroxy-3,4,-methylenedioxyphenanthrene
1-hydroxy-2,3-dimethoxy-7-methyl-9,10-anthraquinone
6-HYDROXY-1,3-DIMETHOXY-7-METHYLANTHRACENE-9,10-DIONE
4-[2-[(1-Carboxy-2-hydroxyethyl)imino]ethylidene]-1,2,3,4-tetrahydro-2,6-pyridinedicarboxylic acid
[3R-(3alph,3aalpha,7beta,7aalpha)]-7-Dimethyl-3,7a-bis(acetyloxy)hexahydro-3a 1,4-isobenzofurandione
[3S-(3alpha,3abeta,7beta,7abeta)]-7-Dimethyl-3,7a-bis(acetyloxy)hexahydro-3a 1,4-isobenzofurandione
[3S-(3alpha,3abeta,7alpha,7abeta)]-7-dimethyl-3,7a-bis(acetyloxy)hexahydro-3a 1,4-Isobenzofurandione
Syzalterin
Syzalterin is a natural product found in Pancratium maritimum with data available.
Hofmeisterin II
A natural product found in Eupatorium cannabinum subspecies asiaticum.
4-Methoxytectochrysin
The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
2,4-Dihydroxy-6-methoxy-3,5-dimethylchalcone
A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 and 4, a methoxy group at position 6 and methyl groups at positions 3 and 5. Isolated from the buds of Cleistocalyx operculatus, it has been shown to exhibit inhibitory effects on the viral neuraminidases from two influenza viral strains, H1N1 and H9N2.
(5-amino-3-triazolo[1,5-a]quinazolinyl)-(4-morpholinyl)methanone
3-HYDROXY-3,4-DIMETHOXYFLAVONE
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.219 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.221 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.218 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.224
3-phenyl-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one
(-)-alpinone|(2S,3S)-3,5-dihydroxy-7-methoxyflavanone
1-(2,4-dihydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]-phenyl)-2-methyl-1-propanone|1-{2,4-dihydroxy-6-[(1E)-2-(4-hydroxyphenyl)ethenyl]phenyl}-2-methyl-1-propanone
5,7-dihydroxy-6-methyl-3-(4-hydroxybenzyl) chromone
7-hydroxy-2,6-dimethoxy-5H-phenanthro[4,5-bcd]pyran-5-ol|agrostophyllanthrol|isoagrostophyllantrol
2-(Methylamino)-3-oxo-3H-phenoxazine-8-carboxylic acid ethyl ester
(7S,8S)-2,4-dihydroxy-7,3-epoxy-8,4-oxyneolign-7-ene|4-[(2S,3S)-3-Methyl-7-((E)-1-propenyl)-2,3-dihydro-1,4-benzodioxin-2-yl]-1,3-benzenediol
5,7-dihydroxy-3-(4-hydroxybenzyl)-8-methylchromone
4H-1-benzopyran-4-one, 3-(2-hydroxy-4-methoxyphenyl)-7-methoxy-
(+-)-1,1-Binaphthyl-carbonsaeure-8|(+-)-Binaphthyl-(1.1)-carbonsaeure-(8)|1,1-Binaphthyl-8-carbonsaeure|<1,1>Binaphthyl-8-carbonsaeure|Binaphthyl-(1.1)-carbonsaeure-(8)|[1,1]Binaphthyl-carbonsaeure-(8)|[1,1]binaphthyl-carboxylic acid-(8)
1-(2,4-dimethoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one
5-Hydroxy-7-methoxy-3-(4-hydroxybenzylidene)chroman-4-one
2H-1-Benzopyran-8-carboxaldehyde, 3,4-dihydro-5,7-dihydroxy-6-methyl-4-oxo-2-phenyl-
5-(erythro-1,2-dihydroxypropyl)-2-(4-hydroxyphenyl)-3-methylbenzofuran
Eutypoid D
A butenolide that is furan-2(5H)-one substituted by a 3,5-dihydroxyphenyl group at position 3 and a 4-hydroxybenzyl group at position 4. It has been isolated from Penicillium species.
(2-Acetyl-phenyl)-beta-D-glucopyranosid|(2-acetyl-phenyl)-beta-D-glucopyranoside|2-beta-D-glucopyranosyloxyacetophenone|2-glucopyranosyloxyacetophenone|acetophenone-2-O-beta-D-glucopyranoside|o-Acetylphenyl-beta-D-glucopyranosid
(4S,6S,10S)-10-bromo-3,11,11-trimethyl-7-methylidenespiro[5.5]undec-2-en-4-ol
6-Hydroxy-5-methoxy-2-(4-methoxy-phenyl)-chromen-7-on|6-hydroxy-5-methoxy-2-(4-methoxy-phenyl)-chromen-7-one
ibericin
Lucidin ethyl ether is a natural product found in Rubia alata, Rubia lanceolata, and other organisms with data available.
O1-((S)-1Phenyl-aethyl)-beta-D-glucopyranuronsaeure|O1-((S)-1phenyl-ethyl)-beta-D-glucopyranuronic acid
1-Hydroxy-3,8-dimethoxy-2-methyl-anthrachinon|3,8-Di-Me ether-1,3,8-Trihydroxy-2-methylanthraquinone
(3E)-2,3-dihydro-7-hydroxy-3-[(3-hydroxy-4-methoxyphenyl)-methylene]-4H-1-benzopyran-4-one|E-7-hydroxy-3-(3-hydroxy-4-methoxybenzylidene)-chroman-4-one
2,6-dimethylphenol glucuronide|O1-(2,6-dimethyl-phenyl)-beta-D-glucopyranuronic acid|O1-(2,6-Dimethyl-phenyl)-beta-D-glucopyranuronsaeure
amentotaxin WB|rel-(3R,3aS,10bR)-3a,4,6,10b-tetrahydro-5-hydroxy-3,6,6-trimethyl-2H-benzo[5,6]indeno[1,2-b]furan-2,7(3G)-dione
2,6-Dimethoxy-1-phenazinecarboxylic acid methyl ester
2,2,4-trimethyl-6-(1-oxo-3-phenylprop-2-enyl)cyclohexane-1,3,5-trione|5-hydroxydesmosdumotin C|champanone B
8-hydroxy-1,2-dimethoxy-3-methylanthracene-9,10-dione
1,5-dihydroxy-8-methoxy-2,3-dimethyl-9,10-anthraquinone
4h-1-benzopyran-4-one,5-hydroxy-7-methoxy-2-(3-methoxyphenyl)-
(E)-4-demethyl-6-methyleucomin|(E)-5,7-dihydroxy-3-(4-hydroxybenzylidene)-6-methylchroman-4-one|Eucomnalin
1-Methoxy-2-hydroxy-3-methyl-6-methoxy-9,10-anthraquinone
2-trans-Cinnamoyl-3-hydroxy-5-methoxy-6,6-dimethyl-cyclohexa-2,4-dienon|2-trans-cinnamoyl-3-hydroxy-5-methoxy-6,6-dimethyl-cyclohexa-2,4-dienone|4-Hydroxy-6-methoxy-1.1-dimethyl-3-trans-cinnamoyl-cyclohexadien-(3.5)-on-(2)|ceroptene
2(S)-7,4-dihydroxy-3-formylflavanone|erythribyssin K
6-Desmethylsideroxylin
A monomethoxyflavone that is sideroxylin in which the methyl group at position 6 has been replaced by a hydrogen. It has been isolated from Hydrastis canadensis and Dracaena cochinchinensis.
(6R)-5beta-(6,7-dihydroxyethyl)-4-(5-hydroxymethyl-furan-2-yl-methylene)-2beta-ethoxy-dihydrofuran-3-one|pollenfuran B
6,8-dimethylisogenistein
A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 2 and methyl group at positions 6 and 8. It has been isolated from Pisonia aculeata.
(2R)-hydroxy-norneomajucin|11-nor-(2R)-hydroxyneomajucin
3-Hydroxy-2,4-dimethoxy-7,8-methylenedioxyphenanthrene
(2S)-8-formyl-7-hydroxy-5-methoxyflavanone|5-methoxy-7-hydroxy-8-formylflavanone
10-bromo-3,7,11,11-tetramethylspiro[5.5]undeca-1,7-dien-3-ol
(S)-2-(8-hydroxy-4-oxo-2-phenylchroman-5-yl)acetic acid|cryptogione C
methyl 1-(propionic acid)-beta-carboline-3-carboxylate
5,2-dihydroxy-7-methoxy-3-benzylidenechroman-4-one|portulacanone D
(E)-9-(3,4-dimethylpent-2-enyloxy)-7H-furo[3,2-g]chromen-7-one
O1-(2,4-dimethyl-phenyl)-beta-D-glucopyranuronic acid|O1-(2,4-Dimethyl-phenyl)-beta-D-glucopyranuronsaeure
O1-(3,5-dimethyl-phenyl)-beta-D-glucopyranuronic acid|O1-(3,5-Dimethyl-phenyl)-beta-D-glucopyranuronsaeure
(2R:3S)-2.3-Dihydroxy-2-(4-methoxy-benzyl)-bernsteinsaeure-dimethylester|(2R:3S)-2.3-dihydroxy-2-(4-methoxy-benzyl)-succinic acid dimethyl ester|4-O-methyl-piscidic acid dimethyl ester
2,4-Dihydroxy-4-methoxy-5-formylchalkon|Neobavachalcon|Neobavachalcone
6-(2,4-dimethoxyphenyl)furo[2,3-f][1,3]benzodioxole
2,9-Dimethoxy-1-phenazinecarboxylic acid methyl ester
2-(2-hydroxy-4-methoxyphenyl)-3-methyl-5,6-dioxymethylene-benzofuran|2-(2-hydroxy-4-methoxyphenyl)-3-methyl-5,6-dioxymethylene-benzo[b]furan|2-(2-Hydroxy-4-methoxyphenyl)-3-methyl-5,6-methylenedioxybenzofuran
(2E,4Z)-1,5-Bis(3,4-dihydroxyphenyl)penta-2,4-dien-1-one|sinensigenin B
O1-(2,3-dimethyl-phenyl)-beta-D-glucopyranuronic acid|O1-(2,3-Dimethyl-phenyl)-beta-D-glucopyranuronsaeure
(S)-4-methoxy-7-phenyl-7,8-dihydro[1,3]dioxolo[4,5-g]isochromen-5-one
Eutypoid C
A butenolide that is furan-2(5H)-one substituted by a 3,4-dihydroxybenzyl group at position 4 and a 4-hydroxyphenyl group at position 3. It has been isolated from Penicillium species.
6-hydroxy-7-methoxy-2-(4-methoxyphenyl)chromen-4-one
O1-(3,4-dimethyl-phenyl)-beta-D-glucopyranuronic acid|O1-(3,4-Dimethyl-phenyl)-beta-D-glucopyranuronsaeure
4-(4-Methoxyphenyl)-5-hydroxy-7-methoxy-2H-1-benzopyran-2-one
Tri-Me ether-1,3,4-Trihydroxy-2,7-phenanthraquinone
2,5-dimethylphenol glucuronide|O1-(2,5-dimethyl-phenyl)-beta-D-glucopyranuronic acid|O1-(2,5-Dimethyl-phenyl)-beta-D-glucopyranuronsaeure
1-hydroxy-3,8-dimethoxy-6-methylanthracene-9,10-dione
AH 6809
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists
KBio2_007587
7,4-Dimethoxy-5-hydroxyisoflavone is a natural product found in Peperomia humilis, Peperomia leptostachya, and other organisms with data available.
COUMAFURYL
D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins CONFIDENCE standard compound; EAWAG_UCHEM_ID 3091
4,7-Dimethoxy-3-hydroxyflavone
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.311 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.307
3,7-Dimethoxy-3-hydroxyflavone
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.301 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.294
N-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]amino}(3-methoxyphenyl)carboxamide
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.393 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.395
5-hydroxy-6,7-dimethoxy-2-phenylchromen-4-one
7-Methylguanosine
A positively charged methylguanosine in which a single methyl substituent is located at position 7.
amlexanox
A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist R - Respiratory system > R03 - Drugs for obstructive airway diseases D018926 - Anti-Allergic Agents
8-Deoxy-11-hydroxy-13-chlorogrosheimin
2-tert-Butoxycarbonylamino-4,5,6,7-tetrahydro-benzothiazole-4-carboxylic acid
methyl 2-(8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetate hydrochloride
2-(4-METHYL-6-OXO-6H-BENZO[C]CHROMEN-3-YLOXY)-PROPIONIC ACID
Ivachtin
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents
tert-Butyl 4-(2-chloropyrimidin-4-yl)piperazine-1-carboxylate
C13H19ClN4O2 (298.11964639999997)
tert-Butyl 4-(4-chloropyrimidin-2-yl)piperazine-1-carboxylate
C13H19ClN4O2 (298.11964639999997)
1-Boc-4-(6-Chloropyridazin-3-yl)piperazine
C13H19ClN4O2 (298.11964639999997)
1,2-BINAPHTHALEN]-4-YLBORONIC ACID
C20H15BO2 (298.11650399999996)
4-[2-(2-Amino-4,7-dihydro-4-oxo-1H-pymol[2,3-d]pyrimodin-5-yl)ethyl]benzoic acid
1-butyl-2,3-dimethylimidazol-3-ium,hexafluorophosphate
3-AMINO-3-[5-(2-TRIFLUOROMETHYLPHENYL)-FURAN-2-YL]-PROPIONIC ACID AMIDE
2-[(4-Fluorophenyl)sulfonyl]hexahydropyrrolo[1,2-a]pyrazin-6(2H)-one
Unifiram (DM232) is acts as a potent cognition enhancer?through the activation of the AMPA-mediated neurotransmission system. Unifiram (DM232) has the potential for amnesia prevention and neurodegenerative disorder research[1][2].
octane-1,8-diylbis(chlorodimethylsilane)
C12H28Cl2Si2 (298.11065080000003)
3-(4-CHLOROPHENYL)-1-(4-ISOBUTYLPHENYL)PROP-2-EN-1-ONE
2,5-DIOXOPYRROLIDIN-1-YL 2,6-DIMETHYLQUINOLINE-4-CARBOXYLATE
s-n-(-)-p-tolylsulfinyltryptamine 97
C17H18N2OS (298.11397780000004)
5-[(4-Methylphenyl)sulfonyl]-3-oxopentanoic acid ethyl ester
2-(3-Chloro-5-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
C14H20BClO4 (298.11431000000005)
3-(3,4-dichlorophenyl)-3,9-diazaspiro[5.5]undecane
3-(2,3-dichlorophenyl)-3,9-diazaspiro[5.5]undecane
[3-[(2-oxido-4-phenyl-1,2,5-oxadiazol-2-ium-3-yl)methoxy]phenyl]methanol
[4-[(2-oxido-4-phenyl-1,2,5-oxadiazol-2-ium-3-yl)methoxy]phenyl]methanol
3-(4-METHYLPIPERAZIN-1-YL)-4-(METHYLSULFONYL)BENZOIC ACID
3-[(3-nitrophenyl)methyl]-1,6,7,8-tetrahydroquinoline-2,5-dione
4-methyl-1-(4-methyl-3-nitrophenyl)sulfonylpiperidine
METHYL 3,4-DIFLUORO-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)BENZOATE
Trastuzumab
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics D004791 - Enzyme Inhibitors
4-METHYL-2-[3-(1H-PYRROL-1-YL)PHENYL]-1,3-THIAZOLE-5-CARBOHYDRAZIDE
2-(CHLOROMETHYL)-5-METHYL-3-(O-TOLYL)QUINAZOLIN-4(3H)-ONE
(Z)-2-(2-tert-Butoxycarbonylaminothiazol-4-yl)-2-pentenoic acid
tert-butyl 4-(3-chloropyrazin-2-yl)piperazine-1-carboxylate
C13H19ClN4O2 (298.11964639999997)
tert-Butyl 4-(6-chloropyrimidin-4-yl)piperazine-1-carboxylate
C13H19ClN4O2 (298.11964639999997)
2-AMINO-4,7-DIHYDRO-5H-THIENO[2,3-C]PYRIDINE-3,6-DICARBOXYLICACID3,6-DIETHYLESTER
tert-butyl 4-(6-chloropyrazin-2-yl)piperazine-1-carboxylate
C13H19ClN4O2 (298.11964639999997)
N-(5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDIN-3-YL)METHANESULFONAMIDE
C12H19BN2O4S (298.11585240000005)
6-tert-butoxycarbonyl-4,5,7,8-tetrahydrothiazolo[4,5-d]azepine-2- carboxylic acid
3-[(1S)-1-Aminoethyl]-8-chloro-2-phenyl-1(2H)-isoquinolinone
(10-Phenylanthracen-9-yl)boronic acid
C20H15BO2 (298.11650399999996)
3-b-D-Ribofuranosyl-6-hydroxyMethyl-furano[2,3-d]-pyriMidin-2-one
Benzo[1,3]dioxole-5-carboxylic acid Methyl-piperidin-4-yl-aMide hydrochloride
2-(4-ethylpiperazin-1-ylsulfonyl)phenylboronic acid
C12H19BN2O4S (298.11585240000005)
Boronic acid, B-[4-[(4-ethyl-1-piperazinyl)sulfonyl]phenyl]-
C12H19BN2O4S (298.11585240000005)
B-[1,1-Binaphthalen]-4-ylboronic acid
C20H15BO2 (298.11650399999996)
Methyl 3,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate
6,11-Dihydro-11-ethyl-6-methyl-9-nitro-5H-pyrido[2,3-B][1,5]benzodiazepin-5-one
5-Methyl-n-(4-methyl-5-oxodithiolo(3,4-d)pyrrol-6-yl)hexanamide
2-(6-(4-Chlorophenoxy)hexyl)oxirane-2-carboxylic acid
8-Hydroxy-7-methoxy-3-(4-methoxyphenyl)chromen-4-one
4H-1-Benzopyran-4-one, 7-hydroxy-5-methoxy-2-(4-methoxyphenyl)-
N-(2-furanylmethyl)-5-(3-methoxyphenyl)-3-isoxazolecarboxamide
2-[[2-(2-methylphenoxy)ethylthio]methyl]-1H-benzimidazole
C17H18N2OS (298.11397780000004)
dihydro-5,5-dimethyl-3-[[[(4-methylphenyl)sulfonyl]oxy]methyl]-2(3H)-furanone
(2S)-2-[6-(4-chlorophenoxy)hexyl]-2-oxiranecarboxylic acid
3-[4-(2,4-Dimethyl-thiazol-5-YL)-pyrimidin-2-ylamino]-phenol
Cyclohexylmethyl 2-formylphenyl hydrogen phosphate
AIDS-071717
The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
2-(3,4-Dimethoxyphenyl)-7-hydroxy-4H-chromen-4-one
Nicotinamide ascorbate
It is used as a food additive
4-(alpha-L-Rhamnopyranosyloxy)benzoic acid methyl ester
(2S,4R)-4-(hydroxymethyl)-6-(4-nitroanilino)cyclohexane-1,2,3-triol
(3e,3ar,8bs)-3-({[(2r)-4-Methyl-5-Oxo-2,5-Dihydrofuran-2-Yl]oxy}methylidene)-3,3a,4,8b-Tetrahydro-2h-Indeno[1,2-B]furan-2-One
3-[(Pyrazine-2-carbonyl)-hydrazono]-N-pyridin-2-yl-butyramide
1-(1-azepanyl)-2-[(5-methyl-4-nitro-1H-pyrazol-3-yl)thio]ethanone
3-[5-[(E)-(1H-tetrazol-5-ylhydrazono)methyl]-2-furyl]benzoic acid
C13H10N6O3 (298.08143500000006)
2-[[5-[2-(1H-benzimidazol-2-yl)ethyl]-4-methyl-1,2,4-triazol-3-yl]thio]acetonitrile
(3E,3aS,8bR)-3-({[(2S)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl]oxy}methylidene)-3,3a,4,8b-tetrahydro-2H-indeno[1,2-b]furan-2-one
(2E)-N-(3-methoxyphenyl)-3-(4-nitrophenyl)prop-2-enamide
N-(4-methoxyphenyl)-3,4-dihydro-1H-isoquinoline-2-carbothioamide
C17H18N2OS (298.11397780000004)
N-[3-(1,3-benzodioxol-5-yl)-2-propen-1-ylidene]-5-methyl-1H-pyrazole-3-carbohydrazide
4-(4-Methylphenyl)sulfonyl-4-oxanecarboxylic acid methyl ester
3-[2-(phenylsulfonyloxy)ethyl]-5,5-dimethyldihydro-2(3H)-furanone
(3E)-3-{[(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy]methylidene}-3,3a,4,8b-tetrahydro-2H-indeno[1,2-b]furan-2-one
6-(4-Ethylphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
6-(3-Ethylphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid
(2R,3R,4R)-2,3,5-trihydroxy-4-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxypentanoic acid
Thiosalicylic acid, S-trimethylsilyl-, trimethylsilyl ester
C13H22O2SSi2 (298.08789920000004)
(1-Phosphonooxy-3-propanoyloxypropan-2-yl) butanoate
C10H19O8P (298.08175040000003)
(1-Acetyloxy-3-phosphonooxypropan-2-yl) pentanoate
C10H19O8P (298.08175040000003)
Dimethylaminopropionylphenothiazine
C17H18N2OS (298.11397780000004)
A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AC - Synthetic antispasmodics, amides with tertiary amines
PS-5
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D013845 - Thienamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams
1-[(2R,5S,9R)-9-Bromo-6,10,10-trimethylspiro[4.5]dec-6-en-2-yl]ethan-1-one
8-Desmethylsideroxylin
A monomethoxyflavone that is sideroxylin in which the methyl group at position 8 is replaced by a hydrogen. It has been found in Hydrastis canadensis and Eucalyptus species.