Exact Mass: 285.2304
Exact Mass Matches: 285.2304
Found 164 metabolites which its exact mass value is equals to given mass value 285.2304
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Mepyramine
Mepyramine (also known as pyrilamine) is a first generation antihistamine, targeting the H1 receptor. However, it rapidly permeates the brain and so often causes drowsiness as a side effect. It is used in over-the-counter combination products for colds and menstrual symptoms. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist CONFIDENCE standard compound; EAWAG_UCHEM_ID 3006 D018926 - Anti-Allergic Agents
Pentazocine
Pentazocine is only found in individuals that have used or taken this drug. It is the first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97)The preponderance of evidence suggests that pentazocine antagonizes the opioid effects by competing for the same receptor sites, especially the opioid mu receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
1-Methyl-2-nonyl-4(1H)-quinolinone
1-Methyl-2-nonyl-4(1H)-quinolinone is a member of quinolines. 1-Methyl-2-nonylquinolin-4(1H)-one is a natural product found in Raulinoa echinata, Tetradium ruticarpum, and other organisms with data available. 1-Methyl-2-nonyl-4(1H)-quinolinone is found in herbs and spices. 1-Methyl-2-nonyl-4(1H)-quinolinone is an alkaloid from Ruta graveolens (rue
Myristoylglycine
Myristoylglycine is an acylglycine with C-14 fatty acid group as the acyl moiety. Acylglycines 1 possess a common amidoacetic acid moiety and are normally minor metabolites of fatty acids. Elevated levels of certain acylglycines appear in the urine and blood of patients with various fatty acid oxidation disorders. They are normally produced through the action of glycine N-acyltransferase which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine ↔ CoA + N-acylglycine. Myristoylglycine is an acylglycine with C-14 fatty acid group as the acyl moiety.
2-Octenoylcarnitine
2-Octenoylcarnitine is an acylcarnitine. More specifically, it is an 2-octenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Octenoyl-L-carnitine
Octenoyl-L-carnitine is an acylcarnitine. More specifically, it is an octenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Octenoyl-L-carnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Octenoyl-L-carnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-Octenoylcarnitine
(2E)-Octenoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-Octenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
3-Octenoylcarnitine
3-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
6-Octenoylcarnitine
6-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-6-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 6-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 6-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
4-Octenoylcarnitine
4-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 4-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 4-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
5-Octenoylcarnitine
5-Octenoylcarnitine is an acylcarnitine. More specifically, it is an oct-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 5-Octenoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 5-Octenoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
2-Propylpent-4-enoylcarnitine
2-Propylpent-4-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-propylpent-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-Propylpent-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-Propylpent-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-2-Propylpent-2-enoylcarnitine
(2E)-2-Propylpent-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-2-propylpent-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-2-Propylpent-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-2-Propylpent-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(3Z)-2-Propylpent-3-enoylcarnitine
(3Z)-2-Propylpent-3-enoylcarnitine is an acylcarnitine. More specifically, it is an (3Z)-2-propylpent-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (3Z)-2-Propylpent-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (3Z)-2-Propylpent-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(+)-Pentazocine
Dehydroabietylamine
5-(4-Methylphenyl)-7-tert-butyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-d]pyrimidine-4-amine
Trachelanthamine
Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids (2S,3R)-((1R,7aS)-hexahydro-1H-pyrrolizin-1-yl)methyl 2,3-dihydroxy-2-isopropylbutanoate is a natural product found in Eupatorium cannabinum, Trachelanthus korolkowii, and other organisms with data available.
(-)-histrionicotoxin 285C|(?)-histrionicotoxin 285C|allodihydrohistrionicotoxin
(2R,3S)-2-acetamido-3-acetoxydodecane|clavaminol I
(2E,9Z)-N-isobutylpentadeca-2,9-diene-12,14-diynamide|2,9-Pentadecadiene-12,14-diynoic acid isobutylamide|pentadeca-2E,9Z-dien-12,14-diynoic acid isobutylamide|pentadeca-2E,9Z-diene-12,14-diynoic acid isobutylamide|pentadeca-2t,9c-dien-12,14-diynoic acid isobutylamide
pyrilamine
D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AC - Substituted ethylene diamines D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1700
dehydroabietylamine
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.139 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.136
Pentazocine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
Pentadecanoyl Ethanolamide
CONFIDENCE standard compound; INTERNAL_ID 29 INTERNAL_ID 29; CONFIDENCE standard compound
1-methyl-2-nonylquinolin-4-one [IIN-based on: CCMSLIB00000845108]
1-methyl-2-nonylquinolin-4-one [IIN-based: Match]
C17_Sphingosine
Sphingosine (d17:1) is a 17-carbon sphingosine found in human skin. Sphingosine (d17:1) can be phosphorylated by sphingosine kinases to produce C-17 sphingosine-1-phosphate. Sphingosine C-17 was used as an internal standard for spectral analysis of sphingoid compounds[1][2][3].
(2S,6R,7S,8S)-7-((E)-but-1-en-3-yn-1-yl)-2-(penta-3,4-dien-1-yl)-1-azaspiro[5.5]undecan-8-ol
(2S,6R,7S,8S)-7-((E)-buta-1,3-dien-1-yl)-2-((E)-pent-2-en-4-yn-1-yl)-1-azaspiro[5.5]undecan-8-ol
(2R,6R,7S,8S)-7-((E)-but-1-en-3-yn-1-yl)-2-(pent-4-yn-1-yl)-1-azaspiro[5.5]undecan-8-ol
(2S,6R,7S,8S)-7-((E)-but-1-en-3-yn-1-yl)-2-((E)-penta-2,4-dien-1-yl)-1-azaspiro[5.5]undecan-8-ol
C17 Sphingosine
Sphingosine (d17:1) is a 17-carbon sphingosine found in human skin. Sphingosine (d17:1) can be phosphorylated by sphingosine kinases to produce C-17 sphingosine-1-phosphate. Sphingosine C-17 was used as an internal standard for spectral analysis of sphingoid compounds[1][2][3].
Leelamine (hydrochloride)
((1S,4AS,10AR)-7-ISOPROPYL-1,4A-DIMETHYL-1,2,3,4,4A,9,10,10A-OCTAHYDROPHENANTHREN-1-YL)METHANAMINE
TERT-BUTYL 2-((TERT-BUTOXYCARBONYL)AMINO)HEX-5-ENOATE
1-BOC-2-[(2-DIMETHYLAMINO-ETHYLAMINO)-METHYL]-PIPERIDINE
tert-butyl 4-(3-ethoxy-3-oxopropyl)piperidine-1-carboxylate
Ethyl [trans-4-({[(2-methyl-2-propanyl)oxy]carbonyl}amino)cyclohe xyl]acetate
3-Methyl 1-(2-methyl-2-propanyl) 3-isopropyl-1,3-piperidinedicarb oxylate
PHENOL, 2-(1,1-DIMETHYLETHYL)-6-(1-METHYLETHYL)-4-(3-PYRIDAZINYLAMINO)-
N-Methyl-N-(2-(4-aminophenoxy)ethyl)-2-(4-aminophenyl)ethanamine
tert-butyl N-[(1R,2S,5S)-2-amino-5-(dimethylcarbamoyl)cyclohexyl]carbamate
(S)-TERT-BUTYL 3-(TERT-BUTYLCARBAMOYL)PIPERAZINE-1-CARBOXYLATE
(1R,7aS)-hexahydro-1H-pyrrolizin-1-ylmethyl 2,3-dihydroxy-2-(propan-2-yl)butanoate
5-Amino-6-cyclohexyl-4-hydroxy-2-isobutyl-hexanoic acid
(hexahydro-1H-pyrrolizin-1-yl)methyl 2,3-dihydroxy-2-(propan-2-yl)butanoate
omega-Hydroxy-15-methylpalmitate
A hydroxy fatty acid anion that is the conjugate base of omega-hydroxy-15-methyl-palmitic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
11-Oxomiltiradiene(1-)
An organic anion that is the conjugate base of 11-oxomiltiradiene, arising from the deprotonation of the methylene group at position 14. Major species at pH 7.3.
Talwin
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
N-Myristoylglycine
An N-acylglycine in which the acyl group is specified as myristoyl (tetradecanoyl).
(2E)-octenoylcarnitine
An O-acylcarnitine having (2E)-octenoyl as the acyl substituent.
O-octenoylcarnitine
An O-acylcarnitine in which the acyl group specified is octenoyl.
Octenoyl-L-carnitine
An O-acyl-L-carnitine that is L-carnitine having a octenoyl group as the acyl substituent in which the position of the double bond is unspecified.
2-octenoyl-L-carnitine
An octenoyl-Lcarnitine having 2-octenoyl as the acyl substituent.
Sphingosine (d17:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(1r,7ar)-hexahydro-1h-pyrrolizin-1-ylmethyl (2s)-2-hydroxy-2-[(1r)-1-hydroxyethyl]-3-methylbutanoate
n-[(2r,3s)-3-(acetyloxy)dodecan-2-yl]ethanimidic acid
(2e,4e,10z)-1-(piperidin-1-yl)tetradeca-2,4,10-trien-8-yn-1-one
n-(2-methylpropyl)pentadeca-2,9-dien-12,14-diynimidic acid
(2S)-2-hydroxy-2-(1-hydroxyethyl)-3-methyl-butyric acid [(1R,8R)-pyrrolizidin-1-yl]methyl ester
{"Ingredient_id": "HBIN006594","Ingredient_name": "(2S)-2-hydroxy-2-(1-hydroxyethyl)-3-methyl-butyric acid [(1R,8R)-pyrrolizidin-1-yl]methyl ester","Alias": "(2S)-2-hydroxy-2-(1-hydroxyethyl)-3-methylbutanoic acid [(1R,8R)-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-1-yl]methyl ester; [(1R,8R)-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-1-yl]methyl (2S)-2-hydroxy-2-(1-hydroxyethyl)-3-methyl-butanoate; 487-99-0; [(1R,8R)-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-1-yl]methyl (2S)-2-hydroxy-2-(1-hydroxyethyl)-3-methylbutanoate; Butanoic acid, 2,3-dihydroxy-2-(1-methylethyl)-, (hexahydro-1H-pyrrolizin-1-yl)methyl ester, (1R-(1alpha(2S*,3R*),7abeta))-","Ingredient_formula": "C15H27NO4","Ingredient_Smile": "CC(C)C(C(C)O)(C(=O)OCC1CCN2C1CCC2)O","Ingredient_weight": "285.38","OB_score": "18.84516742","CAS_id": "487-99-0","SymMap_id": "SMIT03157","TCMID_id": "NA","TCMSP_id": "MOL000599","TCM_ID_id": "NA","PubChem_id": "164622","DrugBank_id": "NA"}