Exact Mass: 224.0837
Exact Mass Matches: 224.0837
Found 74 metabolites which its exact mass value is equals to given mass value 224.0837
,
within given mass tolerance error 0.001 dalton. Try search metabolite list with more accurate mass tolerance error
0.0002 dalton.
Flavanone
Flavonoids (or bioflavonoids) (from the Latin word flavus meaning yellow), also collectively known as Vitamin P and citrin, are a class of plant secondary metabolites or yellow pigments having a structure similar to that of flavones. Flavonoids is found in many foods, some of which are blackcurrant, wild celery, rose hip, and turmeric. Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1]. Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1].
4-Hydroxychalcone
4'-Hydroxychalcone is a chalcone isolated from licorice root, with hepatoprotective activity. 4'-Hydroxychalcone inhibits TNFα-induced NF-κB activation via proteasome inhibition. 4'-Hydroxychalcone induces a rapid potassium release from mitochondrial vesicles and causes deterioration of respiratory control and oxidative phosphorylation of isolated rat liver mitochondria[1][2][3].
4-Hydroxychalcone
4-Hydroxychalcone is found in herbs and spices. 4-Hydroxychalcone is a constituent of Glycyrrhiza glabra (licorice) roots 4-Hydroxychalcone is a chalcone metabolite with anti-angiogenic and anti-inflammatory activities. 4-Hydroxychalcone suppresses angiogenesis by suppression of growth factor pathway with no signs of cytotoxicity[1]. 4-Hydroxychalcone inhibits TNF-α induced NF-κB pathway activation and activates BMP signaling, reduces resistant hypertension (RH) by attenuating hyperaldosteronism and renal injury in mice[2].
Flavanone
Annotation level-1 Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1]. Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1].
Flavanone
Flavanone is the simplest member of the class of flavanones that consists of flavan bearing an oxo substituent at position 4. It derives from a hydride of a flavan. Flavanone is a natural product found in Annona muricata, Ginkgo biloba, and other organisms with data available. The simplest member of the class of flavanones that consists of flavan bearing an oxo substituent at position 4. Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1]. Flavanone is a naturally occurring flavone. Flavanone has inhibitory activity for human estrogen synthetase (aromatase)[1].
6-[(1Z,2Z)-3-Hydroxy-3-phenyl-2-propene-1-ylidene]-2,4-cyclohexadiene-1-one
Dibenzoylmethane
Dibenzoylmethane, a minor ingredient in licorice, activates Nrf2 and prevents various cancers and oxidative damage. Dibenzoylmethane, an analog of curcumin, results in dissociation from Keap1 and nuclear translocation of Nrf2[1]. Dibenzoylmethane, a minor ingredient in licorice, activates Nrf2 and prevents various cancers and oxidative damage. Dibenzoylmethane, an analog of curcumin, results in dissociation from Keap1 and nuclear translocation of Nrf2[1].
Isoflavanone
Isoflavone in which the double bond between positions 2 and 3 has been reduced to a single bond.
Dibenzoylmethane
Dibenzoylmethane is a beta-diketone that is acetylacetone (acac) in which both methyl groups have been replaced by phenyl groups. It is a minor constituent of the root extract of licorice (Glycyrrhiza glabra) and exhibits antimutagenic and anticancer effects. It has a role as an antineoplastic agent, a metabolite and an antimutagen. It is a beta-diketone and an aromatic ketone. Dibenzoylmethane is a natural product found in Acca sellowiana with data available. A beta-diketone that is acetylacetone (acac) in which both methyl groups have been replaced by phenyl groups. It is a minor constituent of the root extract of licorice (Glycyrrhiza glabra) and exhibits antimutagenic and anticancer effects. Dibenzoylmethane, a minor ingredient in licorice, activates Nrf2 and prevents various cancers and oxidative damage. Dibenzoylmethane, an analog of curcumin, results in dissociation from Keap1 and nuclear translocation of Nrf2[1]. Dibenzoylmethane, a minor ingredient in licorice, activates Nrf2 and prevents various cancers and oxidative damage. Dibenzoylmethane, an analog of curcumin, results in dissociation from Keap1 and nuclear translocation of Nrf2[1].
7-acetoxy-1-phenylhept-5E-ene-1,3-diyne|Ac-(E)-7-Phenyl-2-heptene-4,6-diyn-1-ol|Acetat des 1-Phenyl-hepten-(5)-trans-diin-(1.3)-ols-(7)|acetic acid-(7-phenyl-hept-2t-ene-4,6-diynyl ester)|Essigsaeure-(7-phenyl-hept-2t-en-4,6-diinylester)|trans-1-Phenyl-hepten-(5)-diin-(1,3)-yl-(7)-acetat
cis,cis-Tridecatrien-(2,10,12)-triin-(4,6,8)-yl-acetat
azuleno[6,5-b]furan-5-carboxaldehyde, 3,8-dimethyl-
3,5-Dimethyl-4-methylenenaphtho[2,3-b]furan-9(4H)-one
Chalcone, 3
4-hydroxychalcone is a member of the class of chalcones that is trans-chalcone substituted by a hydroxy group at position 4. It has a role as a plant metabolite and an antihypertensive agent. It is a member of chalcones and a member of phenols. It is functionally related to a trans-chalcone. A member of the class of chalcones that is trans-chalcone substituted by a hydroxy group at position 4. 4-Hydroxychalcone is a chalcone metabolite with anti-angiogenic and anti-inflammatory activities. 4-Hydroxychalcone suppresses angiogenesis by suppression of growth factor pathway with no signs of cytotoxicity[1]. 4-Hydroxychalcone inhibits TNF-α induced NF-κB pathway activation and activates BMP signaling, reduces resistant hypertension (RH) by attenuating hyperaldosteronism and renal injury in mice[2].
Spectrum5_000333
4-hydroxychalcone is a member of the class of chalcones that is trans-chalcone substituted by a hydroxy group at position 4. It has a role as an anti-inflammatory agent and an antineoplastic agent. It is a member of chalcones and a member of phenols. 4'-Hydroxychalcone is a chalcone isolated from licorice root, with hepatoprotective activity. 4'-Hydroxychalcone inhibits TNFα-induced NF-κB activation via proteasome inhibition. 4'-Hydroxychalcone induces a rapid potassium release from mitochondrial vesicles and causes deterioration of respiratory control and oxidative phosphorylation of isolated rat liver mitochondria[1][2][3].
2-Hydroxychalcone
2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3]. 2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3].
(4S,5Z,6S)-4-(2-methoxy-2-oxoethyl)-5-[2-[(E)-3-phenylprop-2-enoyl]oxyethylidene]-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4H-pyran-3-carboxylic acid
2-HYDROXY-10,11-DIHYDRO-5H-DIBENZO[A,D][7]ANNULEN-5-ONE
azanium,2-methyl-2-(prop-2-enoylamino)propane-1-sulfonate
2 4-BIS(DIMETHYLAMINO)-6-CHLOROPYRIDINE-3-CARBONITRILE
Karenzu DK2
Dibenzoylmethane, a minor ingredient in licorice, activates Nrf2 and prevents various cancers and oxidative damage. Dibenzoylmethane, an analog of curcumin, results in dissociation from Keap1 and nuclear translocation of Nrf2[1]. Dibenzoylmethane, a minor ingredient in licorice, activates Nrf2 and prevents various cancers and oxidative damage. Dibenzoylmethane, an analog of curcumin, results in dissociation from Keap1 and nuclear translocation of Nrf2[1].
AI3-00855
2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3]. 2-hydroxychalcone, a natural flavonoid, is a potent antioxidant, inhibiting lipid peroxidation. 2-Hydroxychalcone induces apoptosis by Bcl-2 downregulation. 2-Hydroxychalcone inhibits the activation of NF-kB[1][2][3].
2-[(1s)-1-phenylprop-2-en-1-yl]cyclohexa-2,5-diene-1,4-dione
2-(Hexa-2,4-diyn-1-ylidene)-1,6-dioxa-spiro[4,4]non-3-ene
{"Ingredient_id": "HBIN005671","Ingredient_name": "2-(Hexa-2,4-diyn-1-ylidene)-1,6-dioxa-spiro[4,4]non-3-ene","Alias": "AC1NSWAM; 2-(hexa-2,4-diyn-1-ylidene)-1,6-dioxa-spiro[4,4]non-3-ene; (8E)-8-hexa-2,4-diynylidenespiro[4.4]non-6-ene-4,9-dione","Ingredient_formula": "C15H12O2","Ingredient_Smile": "CC#CC#CC=C1C=CC2(C1=O)CCCC2=O","Ingredient_weight": "224.27","OB_score": "94.8200107","CAS_id": "NA","SymMap_id": "SMIT00884","TCMID_id": "31095","TCMSP_id": "MOL005216","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}