Exact Mass: 196.0637
Exact Mass Matches: 196.0637
Found 500 metabolites which its exact mass value is equals to given mass value 196.0637
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
1,7-dimethylurate
1,7 dimethyluric acid is the major urinary caffeine metabolites that is produced in the human body. 1,7 dimethyluric acid is formed during metabolism of caffeine and the process is catalyzed primarily by CYP2A6. (PMID: 18715882) [HMDB] 1,7-Dimethyluric acid is the major urinary caffeine metabolite that is produced in the human body. 1,7-Dimethyluric acid is formed during caffeine metabolism and the process is catalyzed primarily by CYP2A6 (PMID: 18715882).
3,7-Dimethyluric acid
3,7-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3,7-Dimethyluric is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152) [HMDB] 3,7-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3,7-Dimethyluric is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis (PMID:11712316, 15833286, 3506820, 15013152).
Gluconic acid
Gluconic acid, also known as D-gluconic acid, D-gluconate or (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid (also named dextronic acid), is the C1-oxidized form of D-glucose where the aldehyde group has become oxidized to the corresponding carboxylic acid. Gluconic acid belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. In aqueous solution, gluconic acid exists in equilibrium with the cyclic ester glucono delta-lactone. Gluconic acid occurs naturally in fruit, honey, kombucha tea and wine. The salts of gluconic acid are known as "gluconates". Gluconic acid, gluconate salts, and gluconate esters occur widely in nature because such species arise from the oxidation of glucose. Gluconic acid exists in all living species, ranging from bacteria to plants to humans. The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Glucokinase activity has also been detected in mammals, including humans (PMID: 24896608). Gluconic acid is produced in the gluconate shunt pathway. In the gluconate shunt, glucose is oxidized by glucose dehydrogenase (also called glucose oxidase) to furnish gluconate, the form in which D-gluconic acid is present at physiological pH. Subsequently, gluconate is phosphorylated by the action of gluconate kinase to produce 6-phosphogluconate, which is the second intermediate of the pentose phosphate pathway. This gluconate shunt is mainly found in plants, algae, cyanobacteria and some bacteria, which all use the Entner–Doudoroff pathway to degrade glucose or gluconate; this generates 2-keto-3-deoxygluconate-6-phosphate, which is then cleaved to generate pyruvate and glyceraldehyde 3-phosphate. Glucose dehydrogenase and gluconate kinase activities are also present in mammals, fission yeast, and flies. Gluconic acid has many industrial uses. It is used as a drug as part of electrolyte supplementation in total parenteral nutrition. It is also used in cleaning products where it helps cleaning up mineral deposits. Gluconic acid or Gluconic acid is used to maintain the cation-anion balance on electrolyte solutions. In humans, gluconic acid is involved in the metabolic disorder called the transaldolase deficiency. Gluconic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). [Spectral] D-Gluconic acid (exact mass = 196.0583) and Guanine (exact mass = 151.04941) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, acidity regulator approved in Japan. Component of bottle rinsing formulations Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G031
Acetosyringone
Acetosyringone is a member of the class of acetophenones that is 1-phenylethanone substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. It has a role as a non-steroidal anti-inflammatory drug, an anti-asthmatic drug, a non-narcotic analgesic, a peripheral nervous system drug and a plant metabolite. It is a member of acetophenones, a dimethoxybenzene and a member of phenols. Acetosyringone is a natural product found in Justicia adhatoda, Polyporus umbellatus, and other organisms with data available. Acetosyringone is a metabolite found in or produced by Saccharomyces cerevisiae. A member of the class of acetophenones that is 1-phenylethanone substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Acetosyringone is a phenolic compound from wounded plant cells, enables virA gene which encodes a membrane-bound kinase to phosphorylate itself and activate the virG gene product, which stimulates the transcription of other vir genes and itself[1]. Acetosyringone enhances efficient Dunaliella transformation of Agrobacterium strains[2]. Acetosyringone is a phenolic compound from wounded plant cells, enables virA gene which encodes a membrane-bound kinase to phosphorylate itself and activate the virG gene product, which stimulates the transcription of other vir genes and itself[1]. Acetosyringone enhances efficient Dunaliella transformation of Agrobacterium strains[2].
Paeonilactone B
Xanthoxylin
obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].
phlorisobutyrophenone
Phlorisobutyrophenone, also known as 2-methyl-1-(2,4,6-trihydroxyphenyl)-1-propanone or 1-isobutanoyl-2,4,6-trihydroxybenzene, is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Phlorisobutyrophenone is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Phlorisobutyrophenone can be found in a number of food items such as chickpea, common cabbage, angelica, and swamp cabbage, which makes phlorisobutyrophenone a potential biomarker for the consumption of these food products.
2,6-Dimethoxy-4-hydroxyacetophenone
A monohydroxyacetophenone that is acetophenone substituted by methoxy groups at positions 2 and 6 and a hydroxy group at position 4.
5-Hydroxyconiferyl alcohol
5-hydroxyconiferyl alcohol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 5-hydroxyconiferyl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-hydroxyconiferyl alcohol can be found in a number of food items such as tree fern, narrowleaf cattail, asparagus, and garland chrysanthemum, which makes 5-hydroxyconiferyl alcohol a potential biomarker for the consumption of these food products. This compound belongs to the family of Methoxyphenols and Derivatives. These are compounds containing a methoxy group attached to the benzene ring of a phenol moiety.
Galactonate
Galactonic acid is a sugar acid that is a metabolic breakdown product of galactose. Galactose dehydrogenase is responsible for converting galactose to galactonolactone, which then spontaneously or enzymatically converts to galactonic acid. Once formed, galactonic acid may enter the pentose phosphate pathway. Galactonic acid is increased in red blood cells of galactosemic patients, due to a galactose-1-phosphate uridyltransferase (GALT) deficiency (PMID: 14680973, OMMBID: The Online Metabolic and Molecular Bases of Inherited Disease, Ch.72). When present in sufficiently high levels, galactonic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of galactonic acid are associated with at least two inborn errors of metabolism, including galactosemia and galactosemia type II. Galactonic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, liver abnormalities (jaundice), kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated galactosemia. Many affected children with organic acidemias experience intellectual disability or delayed development. High levels of galactonic acid in infants are specifically associated with hepatomegaly (an enlarged liver), cirrhosis, renal failure, cataracts, vomiting, seizure, hypoglycemia, lethargy, brain damage, and ovarian failure. Galactonate is increased in red blood cells of galactosemic patients, due to a galactose-1-phosphate uridyltransferase (GALT) deficiency ((PMID 14680973, OMMBID: The Metabolic and Molecular Bases of Inherited Disease, Ch.72) [HMDB]
Gulonate
Gulonic acid, also known as gulonate, belongs to the class of organic compounds known as medium-chain hydroxy acids and derivatives. These are hydroxy acids with a 6 to 12 carbon atoms long side chain.It is a gulonic acid having D-configuration. Reduction product of glucuronic acid; oxidation product of l-gulose [HMDB]
2,4,5-Trimethoxybenzaldehyde
2,4,5-Trimethoxybenzaldehyde, also known as TMBZ or asaraldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 2,4,5-Trimethoxybenzaldehyde has been detected, but not quantified, in several different foods, such as carrots, herbs and spices, root vegetables, and wild carrots. This could make 2,4,5-trimethoxybenzaldehyde a potential biomarker for the consumption of these foods. 2,4,5-trimethoxybenzaldehyde is a beige powder. (NTP, 1992) 2,4,5-trimethoxybenzaldehyde is a carbonyl compound. 2,4,5-Trimethoxybenzaldehyde is a natural product found in Mosla scabra, Alpinia flabellata, and other organisms with data available. Constituent of bitter principle of carrot seeds (Daucus carota) and sweetflag (Acorus calamus). 2,4,5-Trimethoxybenzaldehyde is found in many foods, some of which are root vegetables, wild carrot, herbs and spices, and carrot. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].
Homoveratric acid
Homoveratric acid is the main metabolite of 3,4-dimethoxyphenylethylamine (DMPEA) in urine. It has been suggested that DMPEA and other amines are in higher concentrations in drug-free schizophrenics than in normal subjects. DMPEA is a the di-methylated metabolite of L-DOPA, the major treatment for Parkinsons disease (PD). (PMID 7059639, 14311254, 588645, 10834300). Homoveratric acid is found in olive. Homoveratric acid is the main metabolite of 3,4-dimethoxyphenylethylamine (DMPEA) in urine. It has been suggested that DMPEA and other amines are in higher concentrations in drug-free schizophrenics than in normal subjects. DMPEA is a the di-methylated metabolite of L-DOPA, the major treatment for Parkinsons disease (PD). (PMID 7059639, 14311254, 588645, 10834300). Homoveratric acid is a phenylacetic acid substituted at positions 3 and 4 by methoxy groups. It has a role as a human urinary metabolite and a human xenobiotic metabolite. It is a dimethoxybenzene and a member of phenylacetic acids. Homoveratric acid is a natural product found in Olea europaea and Zingiber officinale with data available. A phenylacetic acid substituted at positions 3 and 4 by methoxy groups. 3,4-Dimethoxyphenylacetic acid is a building block in the chemical synthesis. 3,4-Dimethoxyphenylacetic acid is a building block in the chemical synthesis.
Dihydroferulate
Dihydroferulic acid is a monocarboxylic acid that is propanoic acid in which one of the hydrogens at position 3 has been replaced by a 4-hydroxy-3-methoxyphenyl group. It has a role as a human xenobiotic metabolite, a plant metabolite, a mouse metabolite and an antioxidant. It is a monocarboxylic acid, a phenylpropanoid and a member of guaiacols. It is functionally related to a propionic acid. It is a conjugate acid of a dihydroferulate. 3-(4-Hydroxy-3-methoxyphenyl)propionic acid is a natural product found in Colchicum kotschyi, Bulbophyllum vaginatum, and other organisms with data available. Dihydroferulic acid, also known as 3-(4-hydroxy-3-methoxyphenyl)propionic acid or dihydroconiferylate, is classified as a member of the phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. Dihydroferulic acid is considered to be slightly soluble (in water) and acidic. Dihydroferulic acid is a phenolic acid metabolite and was found to be significantly elevated in serum after whole grain consumption which makes this compound a potential serum biomarker of whole grain intake (PMID: 25646321). A monocarboxylic acid that is propanoic acid in which one of the hydrogens at position 3 has been replaced by a 4-hydroxy-3-methoxyphenyl group. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2]. Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2].
1,3-dimethylurate
1,3-Dimethyluric acid is a product of theophylline metabolism in man. 1,3-Dimethyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152, 4039734) [HMDB] 1,3-Dimethyluric acid is a product of theophylline metabolism in man. 1,3-Dimethyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID:11712316, 15833286, 3506820, 15013152, 4039734). 1,3-Dimethyluric acid is a product of theophylline metabolism in man. 1,3-Dimethyluric acid is one of the purine components in urinary calculi.
1,9-Dimethyluric acid
1,9-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 1,9-Methyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152) [HMDB] 1,9-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 1,9-Methyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID:11712316, 15833286, 3506820, 15013152).
(+)-3-(3,4-Methylenedioxyphenyl)-1,2-propanediol
(+)-3-(3,4-Methylenedioxyphenyl)-1,2-propanediol is found in herbs and spices. (+)-3-(3,4-Methylenedioxyphenyl)-1,2-propanediol is a constituent of the wood of Sassafras root
3-(3,4-Dihydroxyphenyl)-2-methylpropionic acid
3-(3,4-Dihydroxyphenyl)-2-methylpropionic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)
4-Hydroxy-6-methyl-3-(1-oxobutyl)-2H-pyran-2-one
4-Hydroxy-6-methyl-3-(1-oxobutyl)-2H-pyran-2-one is found in herbs and spices. 4-Hydroxy-6-methyl-3-(1-oxobutyl)-2H-pyran-2-one is a constituent of Pogostemon cablin (patchouli). Constituent of Pogostemon cablin (patchouli). 4-Hydroxy-6-methyl-3-(1-oxobutyl)-2H-pyran-2-one is found in herbs and spices.
(S)-Batatic acid
(S)-Batatic acid is found in potato. (S)-Batatic acid is obtained from sweet potato infected with Ceratostomella fimbriat obtained from sweet potato infected with Ceratostomella fimbriata. (S)-Batatic acid is found in potato.
3,9-Dimethyluric acid
3,9-Dimethyluric acid is involved in purine oxidation pathways. Reevaluation of products derived from 3,9-dimethyluric acid in a chlorination-reductive dechlorinaton sequence has demonstrated unequivocally that they are not purines.(PMID 14601976)
3-(3-hydroxy-4-methoxyphenyl)propanoic acid
3-(3-hydroxy-4-methoxyphenyl)propanoic acid is a predicted metabolite generated by BioTransformer¹ that is produced by the metabolism of 3-(3-hydroxy-4-methoxyphenyl)prop-2-enoic acid. It is generated by abkar1 enzyme via a reduction-of-alpha-beta-unsaturated-compounds-pattern1 reaction. This reduction-of-alpha-beta-unsaturated-compounds-pattern1 occurs in human gut microbiota.
2-Hydroxy-3-(4-methoxyphenyl)propanoic acid
2-Hydroxy-3-(4-methoxyphenyl)propanoic acid is found in cereals and cereal products. 2-Hydroxy-3-(4-methoxyphenyl)propanoic acid is a constituent of wheat, rye (Secale cereale), and barley (Hordeum vulgore). Constituent of wheat, rye (Secale cereale), and barley (Hordeum vulgore). 2-Hydroxy-4-methoxyphloretic acid is found in cereals and cereal products and rye.
7,9-Dimethyluric acid
7,9-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 7,9-Dimethyluracil is one of the purine component in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. (PMID: 11712316, 15833286, 3506820) [HMDB] 7,9-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 7,9-Dimethyluracil is one of the purine component in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. (PMID: 11712316, 15833286, 3506820).
Maltyl isobutyrate
Maltyl isobutyrate is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")
1-(2,4,5-Trihydroxyphenyl)-1-butanone
Antioxidant, especially for fats and oils. Potential food packaging migration residue. Antioxidant, especies for fats and oils. Potential food packaging migration residue
(S)-2-(4-Methoxyphenoxy)propanoic acid
(S)-2-(4-Methoxyphenoxy)propanoic acid is detected in Arabian coffee as a partial racemate (80\\% o.p.). Detected in Arabian coffee as a partial racemate (80\\% o.p.)
3-(3-Hydroxyphenyl)-2-methyllactic acid
3-(3-Hydroxyphenyl)-2-methyllactic acid is a metabolite of carbidopa. Carbidopa (Lodosyn) is a drug given to people with Parkinsons disease in order to inhibit peripheral metabolism of levodopa. This property is significant in that it allows a greater proportion of peripheral levodopa to cross the blood brain barrier for central nervous system effect. (Wikipedia)
Hydroxytyrosol Acetate
Hydroxytyrosol acetate belongs to tyrosols and derivatives class of compounds. Those are compounds containing a hydroxyethyl group attached to the C4 carbon of a phenol group. Hydroxytyrosol acetate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Hydroxytyrosol acetate can be found in olive, which makes hydroxytyrosol acetate a potential biomarker for the consumption of this food product. Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1]. Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1].
3-(5-Methoxy-4-oxocyclohex-2-en-1-yl)prop-2-enoic acid
2-Carboxyarabinitol
2-carboxyarabinitol is a member of the class of compounds known as hydroxy fatty acids. Hydroxy fatty acids are fatty acids in which the chain bears a hydroxyl group. 2-carboxyarabinitol is soluble (in water) and a weakly acidic compound (based on its pKa). 2-carboxyarabinitol can be found in a number of food items such as tarragon, dandelion, ginkgo nuts, and spinach, which makes 2-carboxyarabinitol a potential biomarker for the consumption of these food products.
4-hydroxy-3-methoxybenzoic acid ethyl ester
Flavouring compound [Flavornet]
HTy-Ac
Hydroxytyrosol Acetate is a natural product found in Olea europaea with data available. Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1]. Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1].
Xanthoxylin
obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree). Xanthoxylin is found in many foods, some of which are herbs and spices, german camomile, fats and oils, and pomegranate. Xanthoxylin is a carboxylic ester. It is functionally related to a phloroglucinol. Xanthoxylin is a natural product found in Euphorbia portulacoides, Pulicaria incisa, and other organisms with data available. Xanthoxylin is found in fats and oils. Xanthoxylin is obtained from Zanthoxylum piperitum (Japanese pepper tree) and Sapium sebiferum (Chinese tallowtree Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].
Cantharidin
Cantharidin appears as brown to black powder or plates or scales. Formerly used as a counterirritant and vesicant. Used for the removal of warts. Used as an experimental anti tumor agent. Active ingredient in spanish fly, a reputed aphrodisiac. (EPA, 1998) Cantharidin is a monoterpenoid with an epoxy-bridged cyclic dicarboxylic anhydride structure secreted by many species of blister beetle, and most notably by the Spanish fly, Lytta vesicatoria. Natural toxin inhibitor of protein phosphatases 1 and 2A. It has a role as an EC 3.1.3.16 (phosphoprotein phosphatase) inhibitor and a herbicide. It is a monoterpenoid and a cyclic dicarboxylic anhydride. Cantharidin is a naturally occurring odorless, colorless fatty substance of the terpenoid class that is produced as an oral fluid in the alimentary canal of the male blister beetle. For its natural purpose, the male blister beetle secretes and presents the cantharidin to a female beetle as a copulatory gift during mating. Post-copulation, the female beetle places the cantharidin over her eggs as protection against any potential predators. Available synthetically since the 1950s, topical applications of cantharidin have been used predominantly as a treatment for cutaneous warts since that time. In 1962 however, marketers of cantharidin failed to produce sufficient efficacy data, resulting in the FDA revision of approval of cantharidin. Today, topical cantharidin products do not necessarily demonstrate any particular better effectiveness at treating topical skin conditions like warts than other commonly available vesicant and/or keratolytics although various studies have also investigated the possibility of using cantharidin as an inflammatory model or in cancer treatment. Regardless, the onging lack of FDA approval is likely related to certain toxic effects that were observed following oral ingestion, which includes ulceration of the gastrointestinal and genitourinary tracts, along with electrolyte and renal function disturbance in humans and animals. Cantharidin is a natural product found in Epicauta fabricii, Epicauta sericans, and other organisms with data available. A toxic compound, isolated from the Spanish fly or blistering beetle (Lytta (Cantharis) vesicatoria) and other insects. It is a potent and specific inhibitor of protein phosphatases 1 (PP1) and 2A (PP2A). This compound can produce severe skin inflammation, and is extremely toxic if ingested orally. C78284 - Agent Affecting Integumentary System D009676 - Noxae > D007509 - Irritants D004791 - Enzyme Inhibitors Same as: D11745 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.511
Orsellinic
2,4-dihydroxy-6-methylbenzoic acid ethyl ester is a 4-hydroxybenzoate ester. Ethyl 2,4-dihydroxy-6-methylbenzoate is a natural product found in Parmotrema reticulatum, Parmotrema tinctorum, and other organisms with data available. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2]. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2].
Atraric acid
Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2]. Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2].
6-Methyl-1-oxo-4,4a,5,6-tetrahydro-1H,3H-pyrano[3,4-c]pyran-5-carbaldehyde #
2-Hydroxyphenazine
CONFIDENCE standard compound; INTERNAL_ID 185 INTERNAL_ID 185; CONFIDENCE standard compound
3-hydroxy-5,6-dimethoxy-2-methylcyclohepta-2,4,6-trienone|crototropone
2,6-dihydroxy-3,4-dimethylbenzoic acid methyl ester
3,4-Dihydro-4,4-dimethyl-2,3-bifuran-5,5(2H,2H)-dione
3,5-dimethylorsellinic acid
A member of the class of dihydroxybenzoic acids that is o-orsellinic acid carrying two additional methyl substituents at positions 3 and 5.
3,4,5-Trimethoxybenzaldehyde
3,4,5-Trimethoxybenzaldehyde is a natural product found in Zanthoxylum ailanthoides, Cassia grandis, and other organisms with data available. 3,4,5-Trimethoxybenzaldehyde is an intermediate for the synthesis of various pharmaceuticals, especially for trimethoprim used to research bacterial infections, including urinary tract pathogens infection. 3,4,5-Trimethoxybenzaldehyde is an intermediate for the synthesis of various pharmaceuticals, especially for trimethoprim used to research bacterial infections, including urinary tract pathogens infection.
Hydroxytyrosol acetate
Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1]. Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1].
3,4-dihydro-5-[(1R)-1-hydroxyethyl][2,2-bifuran]-5(2H)-one
4,6-dihydroxy-5-methoxy-7-methyl-1,3-dihydroisobenzofuran
2,5-Cyclohexadiene-1,4-dione, 2,5-dihydroxy-3-methyl-6-(1-methylethyl)-
(2E,7E)-4,9-Dioxo-2,7-decadienoic acid|<2E,7E>-4,9-Dioxo-2,7-decadienoic acid|vermiculic acid|[2E,7E]-4,9-Dioxo-2,7-decadienoic acid
Me ester-6-Ethyl-2,4-dihydroxy-3-methylbenzoic acid
(3R,5S,7S,8S,9S)-3,8-epoxy-7-hydroxy-Delta4,11-dihyronepetalactone|jatamanin B
1-(2,6-dihydroxy-4-methoxy-3-methylphenyl)ethanone
2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-1-one
Ethyl 2,4-dihydroxy-6-methylbenzoate
Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2]. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2].
3-hydroxy-1-(3-hydroxy-4-methoxyphenyl)propan-1-one
3-Hydroxy-4-(alpha-hydroxy-isopropyl)-benzoesaeure|3-hydroxy-4-(alpha-hydroxy-isopropyl)-benzoic acid|3-Hydroxy-4alpha-hydroxyisopropylbenzoesaeure|3.41-Dioxy-4-isopropyl-benzol-carbonsaeure-(1)|3.41-Dioxy-cuminsaeure
6-hydroxy-1-oxo-2-oxaspiro[4.5]dec-7-ene-8-carbaldehyde|canangone
2-Propanone, 1-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-
2,6-dimethoxy-3,5-dimethyl-1,4-benzoquinone|2,6-Dimethoxy-3,5-dimethyl-benzochinon|2,6-Dimethoxy-3,5-dimethyl-[1,4]benzochinon|2,6-dimethoxy-3,5-dimethyl-[1,4]benzoquinone
Atraric_acid
Methyl beta-orcinolcarboxylate is a 4-hydroxybenzoate ester. Methyl 2,4-dihydroxy-3,6-dimethylbenzoate is a natural product found in Usnea angulata, Xylosma longifolia, and other organisms with data available. Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2]. Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2].
M22UI268J1
beta-Hydroxypropiovanillone is a natural product found in Microtropis japonica, Euterpe oleracea, and other organisms with data available. See also: Acai fruit pulp (part of).
EbracteolatacpdB
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone is a natural product found in Euphorbia ebracteolata and Pancratium maritimum with data available.
KBio1_001288
2,4-dihydroxy-6-methylbenzoic acid ethyl ester is a 4-hydroxybenzoate ester. Ethyl 2,4-dihydroxy-6-methylbenzoate is a natural product found in Parmotrema reticulatum, Parmotrema tinctorum, and other organisms with data available. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2]. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2].
1,3-Dimethylurate
Acquisition and generation of the data is financially supported in part by CREST/JST. 1,3-Dimethyluric acid is a product of theophylline metabolism in man. 1,3-Dimethyluric acid is one of the purine components in urinary calculi.
1,9-Dimethyluric acid
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.252 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.253 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.246 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.247
2-hydroxy-4-(4-hydroxyphenyl)butanoic acid
6-[(E)-3,4-dihydroxypent-1-enyl]pyran-2-one
Homoveratric acid
3,4-Dimethoxyphenylacetic acid is a building block in the chemical synthesis. 3,4-Dimethoxyphenylacetic acid is a building block in the chemical synthesis.
1,3-Dimethyluric acid
An oxopurine that is 7,9-dihydro-1H-purine-2,6,8(3H)-trionesubstituted by methyl groups at N-1 and N-3. 1,3-Dimethyluric acid is a product of theophylline metabolism in man. 1,3-Dimethyluric acid is one of the purine components in urinary calculi.
3,7-Dimethyluric acid
An oxopurine that is 7,9-dihydro-1H-purine-2,6,8(3H)-trione substituted by methyl groups at N-3 and N-7.
1,7-Dimethyluric acid
An oxopurine that is 7,9-dihydro-1H-purine-2,6,8(3H)-trione substituted by methyl groups at N-1 and N-7. It is a metabolite of caffeine and is often found in human urine samples.
Dihydroferulic acid
Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2]. Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2].
Asarylaldehyde
Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].
6-[(E)-3,4-dihydroxypent-1-enyl]pyran-2-one [IIN-based: Match]
2,4,5-Trimethoxybenzaldehyde
CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4552 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4219; ORIGINAL_PRECURSOR_SCAN_NO 4216 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4573; ORIGINAL_PRECURSOR_SCAN_NO 4572 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3741; ORIGINAL_PRECURSOR_SCAN_NO 3740 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4550 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7363; ORIGINAL_PRECURSOR_SCAN_NO 7360 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7378; ORIGINAL_PRECURSOR_SCAN_NO 7376 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7361; ORIGINAL_PRECURSOR_SCAN_NO 7359 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7404; ORIGINAL_PRECURSOR_SCAN_NO 7400 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7394; ORIGINAL_PRECURSOR_SCAN_NO 7391 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7418; ORIGINAL_PRECURSOR_SCAN_NO 7416 Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].
2,4,5-Trihydroxybutyrophenone
CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3931; ORIGINAL_PRECURSOR_SCAN_NO 3930 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3944; ORIGINAL_PRECURSOR_SCAN_NO 3943 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3902; ORIGINAL_PRECURSOR_SCAN_NO 3901 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3933; ORIGINAL_PRECURSOR_SCAN_NO 3932 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3919; ORIGINAL_PRECURSOR_SCAN_NO 3918 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3922; ORIGINAL_PRECURSOR_SCAN_NO 3921 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7332; ORIGINAL_PRECURSOR_SCAN_NO 7330 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7360; ORIGINAL_PRECURSOR_SCAN_NO 7358 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7361; ORIGINAL_PRECURSOR_SCAN_NO 7359 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7373; ORIGINAL_PRECURSOR_SCAN_NO 7369 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7358; ORIGINAL_PRECURSOR_SCAN_NO 7356 CONFIDENCE standard compound; INTERNAL_ID 749; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7356; ORIGINAL_PRECURSOR_SCAN_NO 7354
Methyl 2,4-dihydroxy-3,6-dimethylbenzoate
CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4552 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4219; ORIGINAL_PRECURSOR_SCAN_NO 4216 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4573; ORIGINAL_PRECURSOR_SCAN_NO 4572 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3741; ORIGINAL_PRECURSOR_SCAN_NO 3740 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4550 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7363; ORIGINAL_PRECURSOR_SCAN_NO 7360 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7378; ORIGINAL_PRECURSOR_SCAN_NO 7376 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7361; ORIGINAL_PRECURSOR_SCAN_NO 7359 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7404; ORIGINAL_PRECURSOR_SCAN_NO 7400 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7394; ORIGINAL_PRECURSOR_SCAN_NO 7391 CONFIDENCE standard compound; INTERNAL_ID 1194; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7418; ORIGINAL_PRECURSOR_SCAN_NO 7416 Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2]. Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2].
Orsellinic acid, ethyl ester
Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2]. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2].
Asaraldehyde
Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].
Oxytheophylline
1,3-Dimethyluric acid is a product of theophylline metabolism in man. 1,3-Dimethyluric acid is one of the purine components in urinary calculi.
Fluretofen
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic
Bicyclo[2.2.2]oct-5-ene-2,3-dicarboxylicacid, (1R,2R,3R,4S)-rel-
2-Amino-5,5-dimethyl-5,6-dihydro-4H-benzothiazol-7-one
6-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylic acid
5-methyl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylic acid
2-(Methylthio)-5,6,7,8-tetrahydroquinazolin-4(3H)-one
trans-4-(trifluoromethyl)cyclohexanecarboxylic acid
3-Pyridinecarbonitrile,1,2-dihydro-2-oxo-5-phenyl-
6-METHYL-4,5,6,7-TETRAHYDROBENZO[B]THIOPHENE-2-CARBOXYLIC ACID
5,5-DIMETHYL-2-(THIOPHEN-2-YL)-1,3,2-DIOXABORINANE
Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylicacid, 2-methyl ester
6-acetyl-6-hydroxy-4-methylcyclohexa-2,4-diene-1-carboxylic acid
Butanoic acid,2-amino-4-[(aminoiminomethyl)amino]-, hydrochloride (1:1), (2S)-
Bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylicacid, 2-methyl ester, (1R,2S,3R,4S)-rel-
3-Pyridinecarbonitrile,1,2-dihydro-2-oxo-6-phenyl-
2,3-Dihydro-2,3-dimethyl-benzo[b]thiophene 1,1-dioxide
sodium 2-(4-methoxyphenoxy) propionate
Sweet taste inhibitor for foodstuffs
5,6,7,8-Tetrahydro-4H-cyclohepta[b]thiophene-2-carboxylic acid
Methyl 4,5,6,7-tetrahydro-1-benzothiophene-2-carboxylate
METHYL (2R,3S)-(+)-2,3-DIHYDROXY-3-PHENYLPROPIONATE
4,5,6,7-Tetrahydro-1-benzothiophene-3-carbohydrazide
methyl (2R)-2,5-diamino-5-oxopentanoate,hydrochloride
1-(2,4,6-trihydroxy-3,5-dimethylphenyl)ethan-1-one
DIMETHYL 1,3-CYCLOHEXADIENE-1,4-DICARBOX YLATE, TECH., 90
METHYL (R)-2-HYDROXY-3-(4-HYDROXYPHENYL)PROPIONATE
2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide
MONO-METHYL CIS-5-NORBORNENE-ENDO-2,3-DICARBOXYLATE
4-chloro-alpha-cyclopropyl-alpha-methylbenzyl alcohol
4H-Cyclopenta[b]thiophene-3-carboxamide,2-amino-5,6-dihydro-N-methyl-(9CI)
1-(2-FURYLMETHYL)-5-OXOPYRROLIDINE-3-CARBOXYLICACID
Hexahydro-3a,7a-dimethyl-4,7-epoxyisobenzofuran-1,3-dione
7,9-Dihydro-3,9-dimethyl-1H-purine-2,6,8(3H)-trione
(5R)-5-[(1E)-Buta-1,3-dienyl]-4-hydroxy-3,5-dimethylthiophen-2(5H)-one
Gazarin
Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].
brevifolin
Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2]. Xanthoxylin (Xanthoxyline) is isolated from Zanthoxylum simulans. Xanthoxylin (Xanthoxyline) has antifungal and antispasmodic activities[1][2].
Hydroferulic
Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2]. Dihydroferulic acid (Hydroferulic acid) is one of the main metabolites of curcumin and antioxidant/radical-scavenging properties with an IC50 value of 19.5 μM. Dihydroferulic acid is a metabolite of human gut microflora as well as a precursor of vanillic acid[1][2].
AIDS-097062
Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2]. Atraric acid (Methyl atrarate) is a specific androgen receptor (AR) antagonist with anti-inflammatory and anticancer effects. Atraric acid represses the expression of the endogenous prostate specific antigen gene in both LNCaP and C4-2 cells. Atraric acid can also inhibit the synthesis of NO and cytokine, and suppress the MAPK-NFκB signaling pathway. Atraric acid can be used to research prostate diseases and inflammatory diseases[1][2].
86-81-7
3,4,5-Trimethoxybenzaldehyde is an intermediate for the synthesis of various pharmaceuticals, especially for trimethoprim used to research bacterial infections, including urinary tract pathogens infection. 3,4,5-Trimethoxybenzaldehyde is an intermediate for the synthesis of various pharmaceuticals, especially for trimethoprim used to research bacterial infections, including urinary tract pathogens infection.
N-acetyl-L-histidinate
The conjugate base of N-acetyl-L-histidine; major species at pH 7.3.
3-(5-Methoxy-4-oxocyclohex-2-en-1-yl)prop-2-enoic acid
L-dopa(1-)
A L-alpha-amino acid anion which is the conjugate base of L-dopa, obtained by deprotonation of the carboxy group: major species at pH 7.3.
L-Gulonic acid
A gulonic acid formed by oxidising the aldehyde group of L-gulose to a carboxylic acid group.
5-Hydroxyconiferyl alcohol
A phenylpropanoid that is cinnamyl alcohol in which the hydrogens at positions 3 and 4 on the benzene ring are replaced by hydroxy groups while that at position 5 is replaced by a methoxy group.
7,9-dihydro-7,9-Dimethyl-1H-purine-2,6,8(3H)-trione
(E)-5-hydroxyconiferyl alcohol
A 5-hydroxyconiferyl alcohol in which the double bond has E geochemistry.
2-isobutyrylphloroglucinol
A 2-acylphloroglucinol in which the acyl group is specified as isobutyryl.