Exact Mass: 167.95563399999998
Exact Mass Matches: 167.95563399999998
Found 164 metabolites which its exact mass value is equals to given mass value 167.95563399999998
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Phosphoenolpyruvic acid
Phosphoenolpyruvate, also known as pep or 2-(phosphonooxy)-2-propenoic acid, is a member of the class of compounds known as phosphate esters. Phosphate esters are organic compounds containing phosphoric acid ester functional group, with the general structure R1P(=O)(R2)OR3. R1,R2 = O,N, or halogen atom; R3 = organyl group. Phosphoenolpyruvate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Phosphoenolpyruvate can be found in a number of food items such as okra, endive, chestnut, and dandelion, which makes phosphoenolpyruvate a potential biomarker for the consumption of these food products. Phosphoenolpyruvate can be found primarily in blood, cellular cytoplasm, and saliva, as well as in human prostate tissue. Phosphoenolpyruvate exists in all living species, ranging from bacteria to humans. In humans, phosphoenolpyruvate is involved in several metabolic pathways, some of which include glycolysis, amino sugar metabolism, gluconeogenesis, and glycogenosis, type IC. Phosphoenolpyruvate is also involved in several metabolic disorders, some of which include glycogen storage disease type 1A (GSD1A) or von gierke disease, salla disease/infantile sialic acid storage disease, phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), and pyruvate dehydrogenase complex deficiency. Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) as the ester derived from the enol of pyruvate and phosphate. It exists as an anion; the parent acid, which is only of theoretical interest, is phosphoenolpyruvic acid. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/mol) in living organisms, and is involved in glycolysis and gluconeogenesis. In plants, it is also involved in the biosynthesis of various aromatic compounds, and in carbon fixation; in bacteria, it is also used as the source of energy for the phosphotransferase system . Phosphoenolpyruvate (PEP) is an important chemical compound in biochemistry. It has a high energy phosphate bond, and is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is formed by the action of the enzyme enolase on 2-phosphoglycerate. Metabolism of PEP to pyruvate by pyruvate kinase (PK) generates 1 molecule of adenosine triphosphate (ATP) via substrate-level phosphorylation. ATP is one of the major currencies of chemical energy within cells. In gluconeogenesis, PEP is formed from the decarboxylation of oxaloacetate and hydrolysis of 1 guanosine triphosphate molecule. This reaction is catalyzed by the enzyme phosphoenolpyruvate carboxykinase (PEPCK). This reaction is a rate-limiting step in gluconeogenesis. (wikipedia). [Spectral] Phosphoenolpyruvate (exact mass = 167.98237) and 6-Phospho-D-gluconate (exact mass = 276.02463) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID P007
3-Sulfopyruvic acid
Sulfopyruvate, also known as 2-carboxy-2-oxoethanesulfonic acid or beta-sulfopyruvic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Sulfopyruvate is soluble (in water) and an extremely strong acidic compound (based on its pKa). Sulfopyruvate can be found in a number of food items such as french plantain, sago palm, sweet cherry, and ostrich fern, which makes sulfopyruvate a potential biomarker for the consumption of these food products. Sulfopyruvate exists in all living organisms, ranging from bacteria to humans. 3-Sulfopyruvic acid is the product of the transamination of cysteinesulfonate in a reaction catalyzed by aspartate aminotransferase. 3-sulfopyruvic acid is stable and is reduced by malate dehydrogenase to beta-sulfolactate, which is excreted in the urine. Cysteinesulfonate, 3-sulfopyruvic acid, and beta-sulfolactate are reversibly interconverted in vivo. (PMID: 3346220).
Desflurane
Desflurane is a highly fluorinated methyl ethyl ether used for maintenance of general anaesthesia. Volatile agents such as desflurane may activate GABA channels and hyperpolarize cell membranes. In addition, they may inhibit certain calcium channels and therefore prevent release of neurotransmitters and inhibit glutamate channels. Volatile anesthetics easily partition into cellular membranes and could expand the volume of the cell membrane and subsequently distort channels necessary for sodium ion flux and the development of action potentials necessary for synaptic transmission. Desflurane preconditions human myocardium against ischemia through activation of mitochondrial K(ATP) channels, adenosine A1 receptor, and alpha and beta adrenoceptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Tioxolone
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AB - Preparations containing sulfur C78284 - Agent Affecting Integumentary System > C29700 - Astringent
Methyl (2-propenylthio) selenide
Methyl (2-propenylthio) selenide is found in onion-family vegetables. Methyl (2-propenylthio) selenide is a constituent of Allium sp
Methyl 1-propene-1-sulfenoselenoate
Methyl 1-propene-1-sulfenoselenoate is found in onion-family vegetables. Methyl 1-propene-1-sulfenoselenoate is a constituent of Allium sp
Hexafluoroisopropanol
Hexafluoroisopropanol is a metabolite of sevoflurane. Sevoflurane (1,1,1,3,3,3-hexafluoro-2-propane), also called fluoromethyl hexafluoroisopropyl ether, is a sweet-smelling, nonflammable, highly fluorinated methyl isopropyl ether used for induction and maintenance of general anesthesia. Together with desflurane, it is replacing isoflurane and halothane in modern anesthesiology. It is often administered in a mixture of nitrous oxide and oxygen. After desflurane, it is the volatile anesthetic with the fastest onset and offset. (Wikipedia)
1,1,1,2,3,3-Hexafluoro-2-propanol
D001697 - Biomedical and Dental Materials
L-glyceraldehyde 3-phosphate
L-glyceraldehyde 3-phosphate, also known as 3 phosphoglyceraldehyde, is a member of the class of compounds known as glyceraldehyde-3-phosphates. Glyceraldehyde-3-phosphates are compounds containing a glyceraldehyde substituted at position O3 by a phosphate group. L-glyceraldehyde 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). L-glyceraldehyde 3-phosphate can be found in a number of food items such as fruits, cowpea, common sage, and brussel sprouts, which makes L-glyceraldehyde 3-phosphate a potential biomarker for the consumption of these food products.
Phosphoenolpyruvic acid
A monocarboxylic acid that is acrylic acid substituted by a phosphonooxy group at position 2. It is a metabolic intermediate in pathways like glycolysis and gluconeogenesis.
ethyl 2-chloro-2-methylsulfanylacetate
C5H9ClO2S (168.00117640000002)
Cyclobutylmethanesulfonyl chloride
C5H9ClO2S (168.00117640000002)
Phenylarsine oxide
D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors
(2S)-2-aminopropanamide,hydrobromide
C3H9BrN2O (167.98982039999999)
magnesium,1-fluoro-2-methanidylbenzene,chloride
C7H6ClFMg (167.99925380000002)
4-(Trifluoromethyl)thiazol-2-amine
C4H3F3N2S (167.99690339999998)
5-(Trifluoromethyl)-1,3-thiazol-2-amine
C4H3F3N2S (167.99690339999998)
3-fluoro-2-methylphenylmagnesium chlori&
C7H6ClFMg (167.99925380000002)
(2S)-2-(difluoromethoxy)-1,1,1,2-tetrafluoroethane
Glycerone phosphate(2-)
C3H5O6P-2 (167.98237600000002)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
L-Cysteate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
D-glyceraldehyde 3-phosphate(2-)
C3H5O6P-2 (167.98237600000002)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
L-Selenocysteine
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
DESFLURANE
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Glycerone phosphate(2-)
A dianionic form of glycerone phosphate arising from deprotonation of the phosphate OH groups; major species at pH 7.3.
D-glyceraldehyde 3-phosphate(2-)
Dianion of D-glyceraldehyde 3-phosphate arising from deprotonation of both OH groups of the phosphate.
(S)-3-sulfonatolactate(2-)
An optically active form of (S)-3-sulfonatolactate having (S)-configuration.
glyceraldehyde 3-phosphate(2-)
An organophosphate oxoanion taht is the dianion of glyceraldehyde 3-phosphate arising from deprotonation of the phosphate OH groups; major species at pH 7.3.
1,1,1,3,3,3-hexafluoropropan-2-ol
An organofluorine compound formed by substitution of all the methyl protons in propan-2-ol by fluorine. It is a metabolite of inhalation anesthetic sevoflurane.
L-cysteate(1-)
A L-alpha-amino acid anion that is the conjugate base of L-cysteic acid arising from deprotonation of the carboxy and sulfo groups and protonation of the amino group; major species at pH 7.3.
3-Sulfopyruvic acid
A carboxyalkanesulfonic acid comprising pyruvic acid with a sulfo group attached at the C-3 position.