Salvigenin (BioDeep_00000017527)

 

Secondary id: BioDeep_00000270172

human metabolite PANOMIX_OTCML-2023 Endogenous Chemicals and Drugs


代谢物信息卡片


4H-1-Bbenzopyran-4-one, 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-

化学式: C18H16O6 (328.0946836)
中文名称: 三裂鼠尾草素
谱图信息: 最多检出来源 Viridiplantae(plant) 0.05%

分子结构信息

SMILES: C1(OC)=CC2OC(C3C=CC(OC)=CC=3)=CC(=O)C=2C(O)=C1OC
InChI: InChI=1S/C18H16O6/c1-21-11-6-4-10(5-7-11)13-8-12(19)16-14(24-13)9-15(22-2)18(23-3)17(16)20/h4-9,20H,1-3H3

描述信息

Salvigenin, also known as psathyrotin or 7-O-methylpectolinarigenin, is a member of the class of compounds known as 7-O-methylated flavonoids. 7-O-Methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, salvigenin is considered to be a flavonoid lipid molecule. Salvigenin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Salvigenin has been detected, but not quantified in, several different foods, such as rosemaries, mandarin orange (clementine, tangerine), common sages, sweet basils, and peppermints. This could make salvigenin a potential biomarker for the consumption of these foods. BioTransformer predicts that salvigenin is a product of tetramethylscutellarein metabolism via an O-dealkylation reaction catalyzed by CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 enzymes (PMID: 30612223).
Salvigenin, also known as 5-hydroxy-6,7,4-trimethoxyflavone or 7-O-methylpectolinarigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, salvigenin is considered to be a flavonoid lipid molecule. Salvigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Salvigenin can be found in a number of food items such as sweet basil, mandarin orange (clementine, tangerine), common sage, and peppermint, which makes salvigenin a potential biomarker for the consumption of these food products.
Salvigenin is a trimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4, 6, and 7 are replaced by methoxy groups. It has a role as an autophagy inducer, an apoptosis inhibitor, an antilipemic drug, an immunomodulator, an antineoplastic agent, a neuroprotective agent, a hypoglycemic agent and a plant metabolite. It is a trimethoxyflavone and a monohydroxyflavone. It is functionally related to a scutellarein.
Salvigenin is a natural product found in Liatris elegans, Achillea santolina, and other organisms with data available.
See also: Tangerine peel (part of).
A trimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4, 6, and 7 are replaced by methoxy groups.
Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2].
Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2].

同义名列表

18 个代谢物同义名

4H-1-Bbenzopyran-4-one, 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-; 4H-1-Benzopyran-4-one, 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-; 5-Hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one; 5-Hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one; 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)chromen-4-one; flavone, 5-hydroxy-4,6,7-trimethoxy-; 5-Desmethyltetraraethylscutellarein; 5-hydroxy-6,7,4-trimethoxy-flavone; 5-Hydroxy-6,7,4’-trimethoxyflavone; 5-Hydroxy-4’,6,7-trimethoxyflavone; 5-hydroxy-4,6,7-trimethoxyflavone; 5-hydroxy-6,7,4-trimethoxyflavone; QCDYOIZVELGOLZ-UHFFFAOYSA-N; 7-O-methylpectolinarigenin; Salvigenin-d9; Salvesigenine; psathyrotin; Salvigenin



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(2)

代谢反应

84 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(81)

  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: H+ + NADPH + O2 + genkwanin ⟶ H2O + NADP+ + scutellarein 7-methyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • nevadensin biosynthesis: 2-oxoglutarate + O2 + gardenin B ⟶ CO2 + formaldehyde + nevadensin + succinate
  • salvigenin biosynthesis: SAM + apigenin ⟶ SAH + genkwanin
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + scutellarein 7-methyl ether ⟶ H+ + SAH + cirsimaritin

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

110 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Shih-Chung Yen, Liang-Chieh Chen, Han-Li Huang, Sin-Ting Ngo, Yi-Wen Wu, Tony Eight Lin, Tzu-Ying Sung, Ssu-Ting Lien, Hui-Ju Tseng, Shiow-Lin Pan, Wei-Jan Huang, Kai-Cheng Hsu. Investigation of Selected Flavonoid Derivatives as Potent FLT3 Inhibitors for the Potential Treatment of Acute Myeloid Leukemia. Journal of natural products. 2021 01; 84(1):1-10. doi: 10.1021/acs.jnatprod.0c00589. [PMID: 33393294]
  • Mahmoud A Al-Qudah, Hasan I Tashtoush, Ethar F Khlaifat, Sahar O Ibrahim, Ayman M Saleh, Hala I Al-Jaber, Musa H Abu Zarga, Sultan T Abu Orabi. Chemical constituents of the aerial parts of Salvia judaica Boiss. from Jordan. Natural product research. 2020 Oct; 34(20):2981-2985. doi: 10.1080/14786419.2019.1597349. [PMID: 31161797]
  • Melanie Deipenbrock, Andreas Hensel. Polymethoxylated flavones from Orthosiphon stamineus leaves as antiadhesive compounds against uropathogenic E. coli. Fitoterapia. 2019 Nov; 139(?):104387. doi: 10.1016/j.fitote.2019.104387. [PMID: 31678632]
  • Radhakrishnan Srivedavyasasri, Taylor Hayes, Samir A Ross. Phytochemical and biological evaluation of Salvia apiana. Natural product research. 2017 Sep; 31(17):2058-2061. doi: 10.1080/14786419.2016.1269096. [PMID: 28025900]
  • Sahar Mofidi Tabatabaei, Peyman Salehi, Mahdi Moridi Farimani, Markus Neuburger, Maria De Mieri, Matthias Hamburger, Samad Nejad-Ebrahimi. A nor-diterpene from Salvia sahendica leaves. Natural product research. 2017 Aug; 31(15):1758-1765. doi: 10.1080/14786419.2017.1290619. [PMID: 28278660]
  • Amer Tarawneh, Francisco León, Sara Pettaway, Khaled M Elokely, Michael L Klein, Janet Lambert, Arsala Mansoor, Stephen J Cutler. Flavonoids from Perovskia atriplicifolia and Their in Vitro Displacement of the Respective Radioligands for Human Opioid and Cannabinoid Receptors. Journal of natural products. 2015 Jun; 78(6):1461-5. doi: 10.1021/acs.jnatprod.5b00218. [PMID: 26035635]
  • Fatma Pinar Turkmenoglu, İpek Baysal, Samiye Ciftci-Yabanoglu, Kemal Yelekci, Hamdi Temel, Salih Paşa, Nurten Ezer, İhsan Çalış, Gulberk Ucar. Flavonoids from Sideritis Species: Human Monoamine Oxidase (hMAO) Inhibitory Activities, Molecular Docking Studies and Crystal Structure of Xanthomicrol. Molecules (Basel, Switzerland). 2015 Apr; 20(5):7454-73. doi: 10.3390/molecules20057454. [PMID: 25915461]
  • Anna Berim, Jeong-Jin Park, David R Gang. Unexpected roles for ancient proteins: flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. The Plant journal : for cell and molecular biology. 2014 Nov; 80(3):385-95. doi: 10.1111/tpj.12642. [PMID: 25139498]
  • Elke H Heiss, Thi Van Anh Tran, Kristin Zimmermann, Stefan Schwaiger, Corina Vouk, Barbara Mayerhofer, Clemens Malainer, Atanas G Atanasov, Hermann Stuppner, Verena M Dirsch. Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata. Journal of natural products. 2014 Mar; 77(3):503-8. doi: 10.1021/np400778m. [PMID: 24476568]
  • Burcu Çulhaoğlu, Gönül Yapar, Tuncay Dirmenci, Gülaçtı Topçu. Bioactive constituents of Salvia chrysophylla Stapf. Natural product research. 2013 Mar; 27(4-5):438-47. doi: 10.1080/14786419.2012.734820. [PMID: 23126495]
  • Z Habibi, Z Cheraghi, S Ghasemi, M Yousefi. A new highly hydroxylated triterpene from Salvia atropatana Bunge. Natural product research. 2012; 26(20):1910-3. doi: 10.1080/14786419.2011.628668. [PMID: 22017660]
  • Somayyeh Gandomkar, Maryam Yousefi, Zohreh Habibi, Mohammad Ali As'habi. A new triterpene from Salvia xanthocheila Boiss. Natural product research. 2012; 26(7):648-53. doi: 10.1080/14786419.2010.541884. [PMID: 21848491]
  • Megumi Furukawa, Mitsuko Makino, Emika Ohkoshi, Taketo Uchiyama, Yasuo Fujimoto. Terpenoids and phenethyl glucosides from Hyssopus cuspidatus (Labiatae). Phytochemistry. 2011 Dec; 72(17):2244-52. doi: 10.1016/j.phytochem.2011.07.008. [PMID: 21893325]
  • Catherine Argyropoulou, Anastasia Karioti, Helen Skaltsa. Minor labdane diterpenes from Marrubium thessalum. Chemistry & biodiversity. 2011 Oct; 8(10):1880-90. doi: 10.1002/cbdv.201000215. [PMID: 22006716]
  • Seed Niazmand, Maryam Esparham, Tahereh Hassannia, Mohammad Derakhshan. Cardiovascular effects of Teucrium polium L. extract in rabbit. Pharmacognosy magazine. 2011 Jul; 7(27):260-4. doi: 10.4103/0973-1296.84244. [PMID: 21969799]
  • Chia-Feng Kuo, Jeng-De Su, Chun-Hung Chiu, Chiung-Chi Peng, Chi-Huang Chang, Tzu-Ying Sung, Shiau-Huei Huang, Wen-Chin Lee, Charng-Cherng Chyau. Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves. Journal of agricultural and food chemistry. 2011 Apr; 59(8):3674-85. doi: 10.1021/jf104837w. [PMID: 21375325]
  • Naisheng Bai, Kan He, Marc Roller, Ching-Shu Lai, Xi Shao, Min-Hsiung Pan, Antoine Bily, Chi-Tang Ho. Flavonoid glycosides from Microtea debilis and their cytotoxic and anti-inflammatory effects. Fitoterapia. 2011 Mar; 82(2):168-72. doi: 10.1016/j.fitote.2010.08.014. [PMID: 20804824]
  • Ahmad R Gohari, Soodabeh Saeidnia, Maryam Malmir, Abbass Hadjiakhoondi, Yousef Ajani. Flavones and rosmarinic acid from Salvia limbata. Natural product research. 2010 Dec; 24(20):1902-6. doi: 10.1080/14786411003766912. [PMID: 21108116]
  • Muhammad Imran Ali, Zeeshan Ahmed, Alain Francois Kamdem Waffo, Muhammad Shaiq Ali. Flavonoids from Erythrina vogelii (Fabaceae) of Cameroon. Natural product communications. 2010 Jun; 5(6):889-92. doi: ". [PMID: 20614816]
  • Mehdi Mohammadi, Maryam Yousefi, Zohreh Habibi, Abbas Shafiee. Two new coumarins from the chloroform extract of Angelica urumiensis from Iran. Chemical & pharmaceutical bulletin. 2010 Apr; 58(4):546-8. doi: 10.1248/cpb.58.546. [PMID: 20410639]
  • Roshan Patel, Naveen K Mahobia, Ravindra Gendle, Basant Kaushik, Sudarshan K Singh. Diuretic activity of leaves of Plectranthus amboinicus (Lour) Spreng in male albino rats. Pharmacognosy research. 2010 Mar; 2(2):86-8. doi: 10.4103/0974-8490.62956. [PMID: 21808546]
  • Ping Dong, Peiju Qiu, Yi Zhu, Shiming Li, Chi-Tang Ho, David Julian McClements, Hang Xiao. Simultaneous determination of four 5-hydroxy polymethoxyflavones by reversed-phase high performance liquid chromatography with electrochemical detection. Journal of chromatography. A. 2010 Jan; 1217(5):642-7. doi: 10.1016/j.chroma.2009.11.097. [PMID: 20022018]
  • Usama W Hawas, Amira M Gamal-Eldeen, Sayed A A El-Toumy, J J Marion Meyer, Ahmed A Hussein. Inhibition of the initiation stage of carcinogenesis by Salvia disermas constituents. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2009 Nov; 64(11-12):831-9. doi: 10.1515/znc-2009-11-1213. [PMID: 20158154]
  • Hichem Henchiri, Bernard Bodo, Alexandre Deville, Lionel Dubost, Lazhar Zourgui, Aly Raies, Philippe Grellier, Lengo Mambu. Sesquiterpenoids from Teucrium ramosissimum. Phytochemistry. 2009 Jul; 70(11-12):1435-41. doi: 10.1016/j.phytochem.2009.08.012. [PMID: 19766274]
  • William P Jones, Tatiana Lobo-Echeverri, Qiuwen Mi, Hee-Byung Chai, Djaja D Soejarto, Geoffrey A Cordell, Steven M Swanson, A Douglas Kinghorn. Cytotoxic constituents from the fruiting branches of Callicarpa americana collected in southern Florida. Journal of natural products. 2007 Mar; 70(3):372-7. doi: 10.1021/np060534z. [PMID: 17279798]
  • Zheng-wen Yu, Hai-yan Zhu, Xiao-sheng Yang, Qian-yun Sun, Xiao-jiang Hao. [Study on chemical constituents from Incarvillea arguta and their accelerating PC-12 cell differentiation]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Sep; 30(17):1335-8. doi: . [PMID: 16323541]
  • Masateru Ono, Hiroaki Morinaga, Chikako Masuoka, Tsuyoshi Ikeda, Masafumi Okawa, Junei Kinjo, Toshihiro Nohara. New Bisabolane-Type Sesquiterpenes from the Aerial Parts of Lippia dulcis. Chemical & pharmaceutical bulletin. 2005 Sep; 53(9):1175-7. doi: 10.1248/cpb.53.1175. [PMID: 16141591]
  • Roberto F Vieira, Renée J Grayer, Alan J Paton. Chemical profiling of Ocimum americanum using external flavonoids. Phytochemistry. 2003 Jul; 63(5):555-67. doi: 10.1016/s0031-9422(03)00143-2. [PMID: 12809716]