NCBI Taxonomy: 124926

Centaurea cineraria (ncbi_taxid: 124926)

found 67 associated metabolites at species taxonomy rank level.

Ancestor: Centaurea

Child Taxonomies: Centaurea cineraria subsp. circae, Centaurea cineraria subsp. cineraria

Cynaropicrin

2-PROPENOIC ACID, 2-(HYDROXYMETHYL)-, DODECAHYDRO-8-HYDROXY-3,6,9-TRIS(METHYLENE)-2-OXOAZULENO(4,5-B)FURAN-4-YL ESTER, (3AR-(3A.ALPHA.,4.ALPHA.,6A.ALPHA.,8.BETA.,9A.ALPHA.,9B.BETA.))-

C19H22O6 (346.1416312)


Constituent of Cynara scolymus (artichoke). Cynaropicrin is found in cardoon, globe artichoke, and root vegetables. Cynaropicrin is found in cardoon. Cynaropicrin is a constituent of Cynara scolymus (artichoke). Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.

   

3-O-Methylkaempferol

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.06338519999997)


3-o-methylkaempferol, also known as 5,7,4-trihydroxy-3-methoxyflavone or isokaempferide, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 3-o-methylkaempferol is considered to be a flavonoid lipid molecule. 3-o-methylkaempferol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3-o-methylkaempferol can be found in common bean and coriander, which makes 3-o-methylkaempferol a potential biomarker for the consumption of these food products.

   

Eupatilin

2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one; 5,7-Dihydroxy-3,4,6-trimethoxyflavone; 2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6-methoxychromen-4-one; 4H-1-Benzopyran-4-one, 2-(3,4-diMethoxyphenyl)-5,7-dihydroxy-6-Methoxy-

C18H16O7 (344.0895986)


Eupatilin is a trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. It has a role as an anti-ulcer drug, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent, an anti-inflammatory agent and a metabolite. It is a trimethoxyflavone and a dihydroxyflavone. Eupatilin is a natural product found in Eupatorium capillifolium, Chromolaena odorata, and other organisms with data available. A trimethoxyflavone that is flavone substituted by hydroxy groups at C-5 and C-7 and methoxy groups at C-6, C-3 and C-4 respectively. Isolated from Citrus reticulata and Salvia tomentosa, it exhibits anti-inflammatory, anti-ulcer and antineoplastic activities. Eupatilin is found in herbs and spices. Eupatilin is isolated from Tanacetum vulgare (tansy Isolated from Tanacetum vulgare (tansy). Eupatilin is found in herbs and spices. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

(-)-Arctigenin

(3R,4R)-4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-2(3H)-FURANONE;2(3H)-FURANONE,4-[(3,4-DIMETHOXYPHENYL)METHYL]DIHYDRO-3-[(4-HYDROXY-3-METHOXYPHENYL)METHYL]-,(3R,4R);(-)-ARCTIGENIN;ARCTIGENIN;ARCTIGENIN(P)

C21H24O6 (372.1572804)


(-)-Arctigenin is found in burdock. (-)-Arctigenin is isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD).Arctigenin is a lignan found in certain plants of the Asteraceae , including the Greater burdock (Arctium lappa) and Saussurea heteromalla. It has shown antiviral and anticancer effects. It is the aglycone of arctiin. (Wikipedia (-)-Arctigenin is a lignan. Arctigenin is a natural product found in Centaurea cineraria, Forsythia suspensa, and other organisms with data available. See also: Arctium lappa Root (part of); Arctium lappa fruit (part of); Pumpkin Seed (part of) ... View More ... Isolated from Cnicus benedictus, Forsythia viridissima, Arctium lappa, Ipomoea cairica and others (CCD) Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

Cnicin

NCGC00385206-01_C20H26O7_(3aR,4S,10Z,11aR)-10-(Hydroxymethyl)-6-methyl-3-methylene-2-oxo-2,3,3a,4,5,8,9,11a-octahydrocyclodeca[b]furan-4-yl 3,4-dihydroxy-2-methylenebutanoate

C20H26O7 (378.1678446)


C1907 - Drug, Natural Product > C28269 - Phytochemical > C93252 - Sesquiterpene Lactone

   

Acroptilin

Chlorohyssopifolin C

C19H23ClO7 (398.1132238)


A sesquiterpene lactone that is isolated from Acroptilon repens and displays anti-allergic properties.

   

(Z,Z,Z)-1,8,11,14-Heptadecatetraene

(8Z,11Z,14Z)-heptadeca-1,8,11,14-tetraene

C17H28 (232.2190888)


(z,z,z)-1,8,11,14-heptadecatetraene, also known as heptadeca-1,8,11,14-tetraene or aplotaxene, is a member of the class of compounds known as alkatetraenes. Alkatetraenes are acyclic hydrocarbons that contain exactly four carbon-to-carbon double bonds (z,z,z)-1,8,11,14-heptadecatetraene can be found in safflower, which makes (z,z,z)-1,8,11,14-heptadecatetraene a potential biomarker for the consumption of this food product.

   

Salvigenin

4H-1-Bbenzopyran-4-one, 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-

C18H16O6 (328.0946836)


Salvigenin, also known as psathyrotin or 7-O-methylpectolinarigenin, is a member of the class of compounds known as 7-O-methylated flavonoids. 7-O-Methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, salvigenin is considered to be a flavonoid lipid molecule. Salvigenin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Salvigenin has been detected, but not quantified in, several different foods, such as rosemaries, mandarin orange (clementine, tangerine), common sages, sweet basils, and peppermints. This could make salvigenin a potential biomarker for the consumption of these foods. BioTransformer predicts that salvigenin is a product of tetramethylscutellarein metabolism via an O-dealkylation reaction catalyzed by CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 enzymes (PMID: 30612223). Salvigenin, also known as 5-hydroxy-6,7,4-trimethoxyflavone or 7-O-methylpectolinarigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, salvigenin is considered to be a flavonoid lipid molecule. Salvigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Salvigenin can be found in a number of food items such as sweet basil, mandarin orange (clementine, tangerine), common sage, and peppermint, which makes salvigenin a potential biomarker for the consumption of these food products. Salvigenin is a trimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4, 6, and 7 are replaced by methoxy groups. It has a role as an autophagy inducer, an apoptosis inhibitor, an antilipemic drug, an immunomodulator, an antineoplastic agent, a neuroprotective agent, a hypoglycemic agent and a plant metabolite. It is a trimethoxyflavone and a monohydroxyflavone. It is functionally related to a scutellarein. Salvigenin is a natural product found in Liatris elegans, Achillea santolina, and other organisms with data available. See also: Tangerine peel (part of). A trimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4, 6, and 7 are replaced by methoxy groups. Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2]. Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2].

   

l-Arctigenin

4-[(3,4-dimethoxyphenyl)methyl]-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C21H24O6 (372.1572804)


   

Aplotaxene

(8E,11E,14E)-heptadeca-1,8,11,14-tetraene

C17H28 (232.2190888)


Aplotaxene, also known as heptadeca-1,8,11,14-tetraene, is a member of the class of compounds known as alkatetraenes. Alkatetraenes are acyclic hydrocarbons that contain exactly four carbon-to-carbon double bonds. Aplotaxene can be found in burdock, which makes aplotaxene a potential biomarker for the consumption of this food product.

   

Trideca-1,11-dien-3,5,7,9-tetrayn

trideca-1,11-dien-3,5,7,9-tetrayne

C13H8 (164.0625968)


Trideca-1,11-dien-3,5,7,9-tetrayn is a member of the class of compounds known as enynes. Enynes are hydrocarbons containing an alkene and an alkyne group. Trideca-1,11-dien-3,5,7,9-tetrayn can be found in burdock, which makes trideca-1,11-dien-3,5,7,9-tetrayn a potential biomarker for the consumption of this food product.

   

Jaceosidin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-

C17H14O7 (330.0739494)


Jaceosidin, also known as 4,5,7-trihydroxy-3,6-dimethoxyflavone, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, jaceosidin is considered to be a flavonoid lipid molecule. Jaceosidin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jaceosidin can be found in lemon verbena, which makes jaceosidin a potential biomarker for the consumption of this food product. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3]. Jaceosidin is a flavonoid isolated from Artemisia vestita, induces apoptosis in cancer cells, activates Bax and down-regulates Mcl-1 and c-FLIP expression[1]. Jaceosidin exhibits anti-cancer[2], anti-inflammatory activities, decreases leves of inflammatory markers, and suppresses COX-2 expression and NF-κB activation[3].

   

Eupatilin

2- (3,4-Dimethoxyphenyl) -5,7-dihydroxy-6-methoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0895986)


Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

Salvigenin

4H-1-Benzopyran-4-one, 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-

C18H16O6 (328.0946836)


Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2]. Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2].

   
   

Cynaropicrin

2-PROPENOIC ACID, 2-(HYDROXYMETHYL)-, DODECAHYDRO-8-HYDROXY-3,6,9-TRIS(METHYLENE)-2-OXOAZULENO(4,5-B)FURAN-4-YL ESTER, (3AR-(3A.ALPHA.,4.ALPHA.,6A.ALPHA.,8.BETA.,9A.ALPHA.,9B.BETA.))-

C19H22O6 (346.1416312)


Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.

   
   

Desmethoxycentaureidin

Desmethoxycentaureidin

C17H14O7 (330.0739494)


   

Arctigenin

Arctigenin

C21H24O6 (372.1572804)


Annotation level-1 Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

Isokaempferide

5,7,4-trihydroxy-3-methoxyflavone

C16H12O6 (300.06338519999997)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-4H-chromen-4-one

C16H12O6 (300.06338519999997)


   

Arctigenen

2(3H)-furanone, 4-((3,4-dimethoxyphenyl)methyl)dihydro-3-((4-hydroxy-3-methoxyphenyl)methyl)-, (3R-trans)-

C21H24O6 (372.1572804)


Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3]. Arctigenin ((-)-Arctigenin), a biologically active lignan, can be used as an antitumor agent. Arctigenin exhibits potent antioxidant, anti-inflammatory and antiviral (influenza A virus) activities. Arctigenin can be used for the research of metabolic disorders, and central nervous system dysfunctions[1][2][3].

   

10482-53-8

(8Z,11Z,14Z)-heptadeca-1,8,11,14-tetraene

C17H28 (232.2190888)


   

Euptailin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methoxy-

C18H16O7 (344.0895986)


Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities. Eupatilin, a lipophilic flavonoid isolated from Artemisia argyi Lévl. et Van., is a PPARα agonist, and possesses anti-apoptotic, anti-oxidative and anti-inflammatory activities.

   

1,8,11,14-Heptadecatetraene, (Z,Z,Z)-

1,8,11,14-Heptadecatetraene, (Z,Z,Z)-

C17H28 (232.2190888)


   

(9e,11e,13e,15e)-octadeca-9,11,13,15-tetraenal

(9e,11e,13e,15e)-octadeca-9,11,13,15-tetraenal

C18H28O (260.2140038)


   

8-hydroxy-3,6,9-trimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl 3-chloro-2-hydroxy-2-methylpropanoate

8-hydroxy-3,6,9-trimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl 3-chloro-2-hydroxy-2-methylpropanoate

C19H23ClO6 (382.1183088)


   

pentadeca-5,7,11,13-tetraen-9-ynal

pentadeca-5,7,11,13-tetraen-9-ynal

C15H18O (214.1357578)


   

octadeca-8,10,14,16-tetraen-12-ynal

octadeca-8,10,14,16-tetraen-12-ynal

C18H24O (256.1827054)


   

2-(but-3-en-1-yn-1-yl)-5-(penta-1,3-diyn-1-yl)thiophene

2-(but-3-en-1-yn-1-yl)-5-(penta-1,3-diyn-1-yl)thiophene

C13H8S (196.0346688)


   

(3ar,4s,6ar,8r,9s,9ar,9br)-8-hydroxy-3,6-dimethylidene-2-oxo-octahydrospiro[azuleno[4,5-b]furan-9,2'-oxiran]-4-yl (2s)-2-methyloxirane-2-carboxylate

(3ar,4s,6ar,8r,9s,9ar,9br)-8-hydroxy-3,6-dimethylidene-2-oxo-octahydrospiro[azuleno[4,5-b]furan-9,2'-oxiran]-4-yl (2s)-2-methyloxirane-2-carboxylate

C19H22O7 (362.1365462)


   

tetradeca-4,6,10,12-tetraen-8-yn-1-yl acetate

tetradeca-4,6,10,12-tetraen-8-yn-1-yl acetate

C16H20O2 (244.14632200000003)


   

pentadeca-5,7,11,13-tetraen-9-yn-1-yl acetate

pentadeca-5,7,11,13-tetraen-9-yn-1-yl acetate

C17H22O2 (258.1619712)


   

(3ar,4s,11ar)-10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (3s)-3,4-dihydroxy-2-methylidenebutanoate

(3ar,4s,11ar)-10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (3s)-3,4-dihydroxy-2-methylidenebutanoate

C20H26O7 (378.1678446)


   

(3ar,4s,6s,7r,7ar)-6-ethenyl-7-(3-hydroxyprop-1-en-2-yl)-6-methyl-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl (3s)-3,4-dihydroxy-2-methylidenebutanoate

(3ar,4s,6s,7r,7ar)-6-ethenyl-7-(3-hydroxyprop-1-en-2-yl)-6-methyl-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl (3s)-3,4-dihydroxy-2-methylidenebutanoate

C20H26O7 (378.1678446)


   

pentadeca-6,8,10,12-tetraenal

pentadeca-6,8,10,12-tetraenal

C15H22O (218.1670562)


   

(3e,5e,9e,11e)-trideca-3,5,9,11-tetraen-7-yn-1-yl acetate

(3e,5e,9e,11e)-trideca-3,5,9,11-tetraen-7-yn-1-yl acetate

C15H18O2 (230.1306728)


   

trideca-3,5,9,11-tetraen-7-yn-1-yl acetate

trideca-3,5,9,11-tetraen-7-yn-1-yl acetate

C15H18O2 (230.1306728)


   

(2r)-trideca-3,5,7,9,11-pentayne-1,2-diol

(2r)-trideca-3,5,7,9,11-pentayne-1,2-diol

C13H8O2 (196.0524268)


   

(8e,10e,12e,14e)-heptadeca-8,10,12,14-tetraenal

(8e,10e,12e,14e)-heptadeca-8,10,12,14-tetraenal

C17H26O (246.1983546)


   

5-hydroxy-6,7-dimethoxy-2-(3-methoxyphenyl)chromen-4-one

5-hydroxy-6,7-dimethoxy-2-(3-methoxyphenyl)chromen-4-one

C18H16O6 (328.0946836)


   

(11e)-trideca-1,11-dien-3,5,7,9-tetrayne

(11e)-trideca-1,11-dien-3,5,7,9-tetrayne

C13H8 (164.0625968)


   

hexadeca-6,8,12,14-tetraen-10-ynal

hexadeca-6,8,12,14-tetraen-10-ynal

C16H20O (228.151407)


   

octadeca-9,11,13,15-tetraenal

octadeca-9,11,13,15-tetraenal

C18H28O (260.2140038)


   

heptadeca-8,10,12,14-tetraenal

heptadeca-8,10,12,14-tetraenal

C17H26O (246.1983546)


   

(3ar,4s,6ar,8s,9ar,9br)-8-hydroxy-3,6,9-trimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl (2s)-2-methyloxirane-2-carboxylate

(3ar,4s,6ar,8s,9ar,9br)-8-hydroxy-3,6,9-trimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl (2s)-2-methyloxirane-2-carboxylate

C19H22O6 (346.1416312)


   

(4s,8r,9s,9bs)-9-(chloromethyl)-8,9-dihydroxy-3,6-dimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl (2s)-3-chloro-2-hydroxy-2-methylpropanoate

(4s,8r,9s,9bs)-9-(chloromethyl)-8,9-dihydroxy-3,6-dimethylidene-2-oxo-octahydroazuleno[4,5-b]furan-4-yl (2s)-3-chloro-2-hydroxy-2-methylpropanoate

C19H24Cl2O7 (434.0899014)


   

(5e,7e,11e,13e)-pentadeca-5,7,11,13-tetraen-9-ynal

(5e,7e,11e,13e)-pentadeca-5,7,11,13-tetraen-9-ynal

C15H18O (214.1357578)


   

(5e,7e,11e,13e)-pentadeca-5,7,11,13-tetraen-9-yn-1-yl acetate

(5e,7e,11e,13e)-pentadeca-5,7,11,13-tetraen-9-yn-1-yl acetate

C17H22O2 (258.1619712)


   

(7e,9e,11e,13e)-hexadeca-7,9,11,13-tetraenal

(7e,9e,11e,13e)-hexadeca-7,9,11,13-tetraenal

C16H24O (232.18270539999997)


   

(3ar,4s,11ar)-10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 3,4-dihydroxy-2-methylidenebutanoate

(3ar,4s,11ar)-10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 3,4-dihydroxy-2-methylidenebutanoate

C20H26O7 (378.1678446)


   

(8e,10e,14e,16e)-octadeca-8,10,14,16-tetraen-12-ynal

(8e,10e,14e,16e)-octadeca-8,10,14,16-tetraen-12-ynal

C18H24O (256.1827054)


   

2-(but-3-en-1-yn-1-yl)-5-(pent-3-en-1-yn-1-yl)thiophene

2-(but-3-en-1-yn-1-yl)-5-(pent-3-en-1-yn-1-yl)thiophene

C13H10S (198.050318)


   

(6e,8e,12e,14e)-hexadeca-6,8,12,14-tetraen-10-ynal

(6e,8e,12e,14e)-hexadeca-6,8,12,14-tetraen-10-ynal

C16H20O (228.151407)


   

2-(but-3-en-1-yn-1-yl)-5-[(3e)-pent-3-en-1-yn-1-yl]thiophene

2-(but-3-en-1-yn-1-yl)-5-[(3e)-pent-3-en-1-yn-1-yl]thiophene

C13H10S (198.050318)


   

2-(hex-5-en-1,3-diyn-1-yl)-5-(prop-1-yn-1-yl)thiophene

2-(hex-5-en-1,3-diyn-1-yl)-5-(prop-1-yn-1-yl)thiophene

C13H8S (196.0346688)


   

(3ar,4s,6ar,8s,9s,9as,9bs)-8-hydroxy-3,6-dimethylidene-2-oxo-octahydrospiro[azuleno[4,5-b]furan-9,2'-oxiran]-4-yl 2-methyloxirane-2-carboxylate

(3ar,4s,6ar,8s,9s,9as,9bs)-8-hydroxy-3,6-dimethylidene-2-oxo-octahydrospiro[azuleno[4,5-b]furan-9,2'-oxiran]-4-yl 2-methyloxirane-2-carboxylate

C19H22O7 (362.1365462)


   

(4e,6e,10e,12e)-tetradeca-4,6,10,12-tetraen-8-yn-1-yl acetate

(4e,6e,10e,12e)-tetradeca-4,6,10,12-tetraen-8-yn-1-yl acetate

C16H20O2 (244.14632200000003)


   

(6e,8e,10e,12e)-pentadeca-6,8,10,12-tetraenal

(6e,8e,10e,12e)-pentadeca-6,8,10,12-tetraenal

C15H22O (218.1670562)


   

(3ar,4s,6ar,8s,9r,9as,9bs)-8-hydroxy-3,6-dimethylidene-2-oxo-octahydrospiro[azuleno[4,5-b]furan-9,2'-oxiran]-4-yl 2-(hydroxymethyl)prop-2-enoate

(3ar,4s,6ar,8s,9r,9as,9bs)-8-hydroxy-3,6-dimethylidene-2-oxo-octahydrospiro[azuleno[4,5-b]furan-9,2'-oxiran]-4-yl 2-(hydroxymethyl)prop-2-enoate

C19H22O7 (362.1365462)


   

10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-(acetyloxy)-3-hydroxy-2-methylidenebutanoate

10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 4-(acetyloxy)-3-hydroxy-2-methylidenebutanoate

C22H28O8 (420.1784088)


   

(7e,9e,13e,15e)-heptadeca-7,9,13,15-tetraen-11-ynal

(7e,9e,13e,15e)-heptadeca-7,9,13,15-tetraen-11-ynal

C17H22O (242.1670562)


   

(3ar,4s,11ar)-10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (3s)-4-(acetyloxy)-3-hydroxy-2-methylidenebutanoate

(3ar,4s,11ar)-10-(hydroxymethyl)-6-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (3s)-4-(acetyloxy)-3-hydroxy-2-methylidenebutanoate

C22H28O8 (420.1784088)


   

heptadeca-7,9,13,15-tetraen-11-ynal

heptadeca-7,9,13,15-tetraen-11-ynal

C17H22O (242.1670562)


   

6-ethenyl-7-(3-hydroxyprop-1-en-2-yl)-6-methyl-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 3,4-dihydroxy-2-methylidenebutanoate

6-ethenyl-7-(3-hydroxyprop-1-en-2-yl)-6-methyl-3-methylidene-2-oxo-tetrahydro-3ah-1-benzofuran-4-yl 3,4-dihydroxy-2-methylidenebutanoate

C20H26O7 (378.1678446)


   

trideca-3,5,7,9,11-pentayne-1,2-diol

trideca-3,5,7,9,11-pentayne-1,2-diol

C13H8O2 (196.0524268)


   

(3as,4r,6r,7s,7as)-6-ethenyl-4-hydroxy-7-(3-hydroxyprop-1-en-2-yl)-6-methyl-3-methylidene-tetrahydro-3ah-1-benzofuran-2-one

(3as,4r,6r,7s,7as)-6-ethenyl-4-hydroxy-7-(3-hydroxyprop-1-en-2-yl)-6-methyl-3-methylidene-tetrahydro-3ah-1-benzofuran-2-one

C15H20O4 (264.13615200000004)