Progoitrin (BioDeep_00000000796)

 

Secondary id: BioDeep_00000268931, BioDeep_00000398324, BioDeep_00000400360, BioDeep_00000400361, BioDeep_00000400472, BioDeep_00000402860, BioDeep_00000402985, BioDeep_00000403067, BioDeep_00001037341, BioDeep_00001867552

natural product human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] (3R)-3-hydroxy-N-sulfooxy-pent-4-enimidothioate

化学式: C11H19NO10S2 (389.045)
中文名称: 原告依春
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 51.15%

分子结构信息

SMILES: C=CC(CC(=NOS(=O)(=O)O)SC1C(C(C(C(O1)CO)O)O)O)O
InChI: InChI=1S/C11H19NO10S2/c1-2-5(14)3-7(12-22-24(18,19)20)23-11-10(17)9(16)8(15)6(4-13)21-11/h2,5-6,8-11,13-17H,1,3-4H2,(H,18,19,20)/b12-7+

描述信息

Progoitrin is found in brassicas. Progoitrin is present in red cabbage, Brussel sprouts, savoy cabbage, Brassica napus (rape seed) and other Brassica species Progoitrin is a biochemical that is found in some food, which is inactive but after ingestion is converted to goitrin. Goitrin decrease the thyroid hormone production.
2-Hydroxy-3-butenyl glucosinolate is a natural product found in Zilla spinosa, Brassica incana, and other organisms with data available.
Present in red cabbage, Brussel sprouts, savoy cabbage, Brassica napus (rape seed) and other Brassica subspecies
Progoitrin is the stereoisomer of xi-progoitrin that has R at the carbon bearing the allylic hydroxy group. It has a role as a plant metabolite. It is a conjugate acid of a progoitrin(1-).
Progoitrin is a natural product found in Isatis tinctoria and Brassica oleracea with data available.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Progoitrin is the dominant glucosinolate in incriminated crops. Antithyroid activity[1][2].
Progoitrin is the dominant glucosinolate in incriminated crops. Antithyroid activity[1][2].

同义名列表

33 个代谢物同义名

{[(e)-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}pent-4-en-1-ylidene)amino]oxy}sulphonic acid; {[(E)-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}pent-4-en-1-ylidene)amino]oxy}sulfonic acid; {[(e)-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulphanyl}pent-4-en-1-ylidene)amino]oxy}sulphonate; [(E)-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}pent-4-en-1-ylidene)amino]oxysulfonic acid; {[(e)-(3-hydroxy-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}pent-4-en-1-ylidene)amino]oxy}sulfonate; 1-Thio-b-D-glucopyranose 1-[3-hydroxy-N-(sulfooxy)-4-pentenimidate], 9CI; 2(R)-2-Hydroxy 3-butenyl glucosinolate; (2S)-2-Hydroxy-3-butenyl-glucosinolate; 2(R)-2-Hydroxy-3-butenyl glucosinolate; 2-Hydroxy-3-butenyl glucosinolate; progoitrin, monopotassium salt; progoitrin, (S)-isomer; Glucorapiferin; epi-Progoitrin; epiprogoitrin; progoitrin; [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl] (3R)-3-hydroxy-N-sulfooxy-pent-4-enimidothioate; [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] (3R)-3-hydroxy-N-sulfooxypent-4-enimidothioate; Glucopyranose, 1-thio-, 1-((R)-3-hydroxy-4-pentenohydroximate) NO-(hydrogen sulfate), beta-D-; .BETA.-D-GLUCOPYRANOSE, 1-THIO-, 1-((3R)-3-HYDROXY-N-(SULFOOXY)-4-PENTENIMIDATE); beta-D-Glucopyranose, 1-thio-, 1-(3-hydroxy-N-(sulfooxy)-4-pentenimidate), (R)-; beta-D-Glucopyranose, 1-thio-, 1-((3R)-3-hydroxy-N-(sulfooxy)-4-pentenimidate; 1-S-[(3R)-3-hydroxy-N-(sulfooxy)pent-4-enimidoyl]-1-thio-beta-D-glucopyranose; 1-S-[3-Hydroxy-N-(sulfooxy)pent-4-enimidoyl]-1-thiohexopyranose; Progoitrin ((2R)-Hydroxybut-3-enyl-GS); 2-hydroxy-3-butenyl glucosinolate;PRO; (2R)-2-Hydroxybut-3-enylglucosinolate; 2(R)-Hydroxy-3-butenyl glucosinolate; R-2-Hydroxy-3-butenyl glucosinolate; UNII-S27T66W417; (R)-PROGOITRIN; S27T66W417; Progoitrin



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

34 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Srijan Jhingan, Hans-Joachim Harloff, Amine Abbadi, Claudia Welsch, Martina Blümel, Deniz Tasdemir, Christian Jung. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes. Scientific reports. 2023 Feb; 13(1):2344. doi: 10.1038/s41598-023-28661-6. [PMID: 36759657]
  • Azra Đulović, Marijana Popović, Franko Burčul, Vedrana Čikeš Čulić, Sandra Marijan, Mirko Ruščić, Nikolina Anđelković, Ivica Blažević. Glucosinolates of Sisymbrium officinale and S. orientale. Molecules (Basel, Switzerland). 2022 Dec; 27(23):. doi: 10.3390/molecules27238431. [PMID: 36500524]
  • Youfeng Zhang, Helin Lv, Binbin Yang, Panxi Zheng, Hui Zhang, Xingguo Wang, Michael Granvogl, Qingzhe Jin. Characterization of Thermally Induced Flavor Compounds from the Glucosinolate Progoitrin in Different Matrices via GC-TOF-MS. Journal of agricultural and food chemistry. 2022 Feb; 70(4):1232-1240. doi: 10.1021/acs.jafc.1c04415. [PMID: 35050615]
  • Yan Xu, Jinhang Li, Yanhong Shi, Li Yang, Zhengtao Wang, Han Han, Rui Wang. Stereoselective pharmacokinetic study of epiprogoitrin and progoitrin in rats with UHPLC-MS/MS method. Journal of pharmaceutical and biomedical analysis. 2020 Aug; 187(?):113356. doi: 10.1016/j.jpba.2020.113356. [PMID: 32416341]
  • Li-Xing Nie, Yan-Lin Wu, Zhong Dai, Shuang-Cheng Ma. Antiviral activity of Isatidis Radix derived glucosinolate isomers and their breakdown products against influenza A in vitro/ovo and mechanism of action. Journal of ethnopharmacology. 2020 Apr; 251(?):112550. doi: 10.1016/j.jep.2020.112550. [PMID: 31918015]
  • Marie Groenbaek, Ulla Kidmose, Erik Tybirk, Hanne Lakkenborg Kristensen. Glucosinolate Content and Sensory Evaluation of Baby Leaf Rapeseed from Annual and Biennial White- and Yellow-Flowering Cultivars with Repeated Harvesting in Two Seasons. Journal of food science. 2019 Jul; 84(7):1888-1899. doi: 10.1111/1750-3841.14680. [PMID: 31237979]
  • Yanhong Shi, Cheng Zheng, Jinhang Li, Li Yang, Zhengtao Wang, Rui Wang. Separation and Quantification of Four Main Chiral Glucosinolates in Radix Isatidis and Its Granules Using High-Performance Liquid Chromatography/Diode Array Detector Coupled with Circular Dichroism Detection. Molecules (Basel, Switzerland). 2018 May; 23(6):. doi: 10.3390/molecules23061305. [PMID: 29844266]
  • Arif Hasan Khan Robin, Go-Eun Yi, Rawnak Laila, Kiwoung Yang, Jong-In Park, Hye Ran Kim, Ill-Sup Nou. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content. Molecules (Basel, Switzerland). 2016 Jun; 21(6):. doi: 10.3390/molecules21060787. [PMID: 27322230]
  • Peter Felker, Ronald Bunch, Angela M Leung. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutrition reviews. 2016 Apr; 74(4):248-58. doi: 10.1093/nutrit/nuv110. [PMID: 26946249]
  • Nicole A Goodey, Hannah V Florance, Nicholas Smirnoff, Dave J Hodgson. Aphids Pick Their Poison: Selective Sequestration of Plant Chemicals Affects Host Plant Use in a Specialist Herbivore. Journal of chemical ecology. 2015 Oct; 41(10):956-64. doi: 10.1007/s10886-015-0634-2. [PMID: 26411571]
  • Mariateresa Maldini, Simona Baima, Giorgio Morelli, Cristina Scaccini, Fausta Natella. A liquid chromatography-mass spectrometry approach to study "glucosinoloma" in broccoli sprouts. Journal of mass spectrometry : JMS. 2012 Sep; 47(9):1198-206. doi: 10.1002/jms.3028. [PMID: 22972788]
  • Zheng Liu, Arvind H Hirani, Peter B E McVetty, Fouad Daayf, Carlos F Quiros, Genyi Li. Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family. Plant molecular biology. 2012 May; 79(1-2):179-89. doi: 10.1007/s11103-012-9905-2. [PMID: 22477389]
  • Sébastien Ibanez, Christiane Gallet, Laurence Després. Plant insecticidal toxins in ecological networks. Toxins. 2012 Apr; 4(4):228-43. doi: 10.3390/toxins4040228. [PMID: 22606374]
  • Yan-Hong Shi, Zhi-Yong Xie, Rui Wang, Shan-Jun Huang, Yi-Ming Li, Zheng-Tao Wang. Quantitative and chemical fingerprint analysis for the quality evaluation of Isatis indigotica based on ultra-performance liquid chromatography with photodiode array detector combined with chemometric methods. International journal of molecular sciences. 2012; 13(7):9035-9050. doi: 10.3390/ijms13079035. [PMID: 22942750]
  • Zhiyong Xie, Yanhong Shi, Zhengtao Wang, Rui Wang, Yiming Li. Biotransformation of glucosinolates epiprogoitrin and progoitrin to (R)- and (S)-Goitrin in Radix isatidis. Journal of agricultural and food chemistry. 2011 Dec; 59(23):12467-72. doi: 10.1021/jf203321u. [PMID: 22023255]
  • Ishita Ahuja, Birgit Hafeld Borgen, Magnor Hansen, Bjørn Ivar Honne, Caroline Müller, Jens Rohloff, John Trevor Rossiter, Atle Magnar Bones. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. Journal of experimental botany. 2011 Oct; 62(14):4975-93. doi: 10.1093/jxb/err195. [PMID: 21778185]
  • Jeffrey A Harvey, Nicole M van Dam, Ciska E Raaijmakers, James M Bullock, Rieta Gols. Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia. 2011 Jun; 166(2):421-31. doi: 10.1007/s00442-010-1861-4. [PMID: 21140168]
  • Birgit Hafeld Borgen, Ole Petter Thangstad, Ishita Ahuja, John Trevor Rossiter, Atle Magnar Bones. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. Journal of experimental botany. 2010 Jun; 61(6):1683-97. doi: 10.1093/jxb/erq039. [PMID: 20219777]
  • Jeroen J Jansen, Nicole M van Dam, Huub C J Hoefsloot, Age K Smilde. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses. BMC bioinformatics. 2009 Dec; 10(?):425. doi: 10.1186/1471-2105-10-425. [PMID: 20015363]
  • Erika L Newton, James M Bullock, Dave J Hodgson. Glucosinolate polymorphism in wild cabbage (Brassica oleracea) influences the structure of herbivore communities. Oecologia. 2009 May; 160(1):63-76. doi: 10.1007/s00442-009-1281-5. [PMID: 19214588]
  • Jon Volden, Trude Wicklund, Ruud Verkerk, Matthijs Dekker. Kinetics of changes in glucosinolate concentrations during long-term cooking of white cabbage (Brassica oleracea L. ssp. capitata f. alba). Journal of agricultural and food chemistry. 2008 Mar; 56(6):2068-73. doi: 10.1021/jf0731999. [PMID: 18303838]
  • Rieta Gols, Tibor Bukovinszky, Nicole M van Dam, Marcel Dicke, James M Bullock, Jeffrey A Harvey. Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. Journal of chemical ecology. 2008 Feb; 34(2):132-43. doi: 10.1007/s10886-008-9429-z. [PMID: 18231835]
  • Guillermo Padilla, María Elena Cartea, Pablo Velasco, Antonio de Haro, Amando Ordás. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry. 2007 Feb; 68(4):536-45. doi: 10.1016/j.phytochem.2006.11.017. [PMID: 17187832]
  • Kim-Chung Lee, Man-Wai Cheuk, Wan Chan, Albert Wai-Ming Lee, Zhong-Zhen Zhao, Zhi-Hong Jiang, Zongwei Cai. Determination of glucosinolates in traditional Chinese herbs by high-performance liquid chromatography and electrospray ionization mass spectrometry. Analytical and bioanalytical chemistry. 2006 Dec; 386(7-8):2225-32. doi: 10.1007/s00216-006-0882-7. [PMID: 17086388]
  • Lijiang Song, John J Morrison, Nigel P Botting, Paul J Thornalley. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC-MS/MS. Analytical biochemistry. 2005 Dec; 347(2):234-43. doi: 10.1016/j.ab.2005.09.040. [PMID: 16289008]
  • Rafael Font, Mercedes del Río-Celestino, Elena Cartea, Antonio de Haro-Bailón. Quantification of glucosinolates in leaves of leaf rape (Brassica napus ssp. pabularia) by near-infrared spectroscopy. Phytochemistry. 2005 Jan; 66(2):175-85. doi: 10.1016/j.phytochem.2004.11.011. [PMID: 15652574]
  • Ren-gui Wei, Shu-mei Chen, Tang Jiang, Xiao-yun Jiang, Yu Zeng, Ying Mo. [Idiopathic collapsing glomerulopathy in children: report of two cases]. Zhonghua er ke za zhi = Chinese journal of pediatrics. 2004 Oct; 42(10):731-3. doi: NULL. [PMID: 16221337]
  • Roberta Bernardi, Michelina G Finiguerra, Alessandro A Rossi, Sandro Palmieri. Isolation and biochemical characterization of a basic myrosinase from ripe Crambe abyssinica seeds, highly specific for epi-progoitrin. Journal of agricultural and food chemistry. 2003 Apr; 51(9):2737-44. doi: 10.1021/jf020796g. [PMID: 12696966]
  • Frédéric Francis, Georges Lognay, Jean-Paul Wathelet, Eric Haubruge. Characterisation of aphid myrosinase and degradation studies of glucosinolates. Archives of insect biochemistry and physiology. 2002 Aug; 50(4):173-82. doi: 10.1002/arch.10042. [PMID: 12125058]
  • S Galletti, R Bernardi, O Leoni, P Rollin, S Palmieri. Preparation and biological activity of four epiprogoitrin myrosinase-derived products. Journal of agricultural and food chemistry. 2001 Jan; 49(1):471-6. doi: 10.1021/jf000736f. [PMID: 11170613]
  • P Kloss, E Jeffery, M Tumbleson, Y Zhang, C Parsons, M Wallig. Studies on the toxic effects of crambe meal and two of its constituents, 1-cyano-2-hydroxy-3-butene (CHB) and epi-progoitrin, in broiler chick diets. British poultry science. 1996 Dec; 37(5):971-86. doi: 10.1080/00071669608417928. [PMID: 9034587]
  • M E Kammüller, H J Verhaar, C Versluis, J K Terlouw, L Brandsma, A H Penninks, W Seinen. 1-Phenyl-5-vinyl-2-imidazolidinethione, a proposed causative agent of Spanish toxic oil syndrome: synthesis, and identification in one of a group of case-associated oil samples. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1988 Feb; 26(2):119-27. doi: 10.1016/0278-6915(88)90108-1. [PMID: 3366411]
  • M Kujawa, R Macholz, J Schulze, W Schnaak. [Significance of gastrointestinal microflora for the metabolism of foreign compounds]. Die Nahrung. 1987; 31(5-6):619-24. doi: 10.1002/food.19870310581. [PMID: 2443851]