Pretyrosine (BioDeep_00000004489)

 

Secondary id: BioDeep_00001869562

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


1-[(2S)-2-amino-2-carboxyethyl]-4-hydroxycyclohexa-2,5-diene-1-carboxylic acid

化学式: C10H13NO5 (227.0794)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(otcml) 30.94%

分子结构信息

SMILES: C1=CC(C=CC1O)(CC(C(=O)O)N)C(=O)O
InChI: InChI=1S/C10H13NO5/c11-7(8(13)14)5-10(9(15)16)3-1-6(12)2-4-10/h1-4,6-7,12H,5,11H2,(H,13,14)(H,15,16)



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

2 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

  • Phenylalanine Metabolism: 2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Tyrosine ⟶ 4-Hydroxyphenylpyruvic acid + L-Phenylalanine
  • Tyrosine Metabolism: 4-Fumarylacetoacetic acid + Water ⟶ Acetoacetic acid + Fumaric acid + Hydrogen Ion

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Ryo Yokoyama, Marcos V V de Oliveira, Bailey Kleven, Hiroshi A Maeda. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. The Plant cell. 2021 05; 33(3):671-696. doi: 10.1093/plcell/koaa042. [PMID: 33955484]
  • Yuki Aoi, Akira Oikawa, Ryosuke Sasaki, Jirong Huang, Ken-Ichiro Hayashi, Hiroyuki Kasahara. Arogenate dehydratases can modulate the levels of phenylacetic acid in Arabidopsis. Biochemical and biophysical research communications. 2020 03; 524(1):83-88. doi: 10.1016/j.bbrc.2020.01.041. [PMID: 31980164]
  • Yichun Qian, Joseph H Lynch, Longyun Guo, David Rhodes, John A Morgan, Natalia Dudareva. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nature communications. 2019 01; 10(1):15. doi: 10.1038/s41467-018-07969-2. [PMID: 30604768]
  • Jorge El-Azaz, Fernando de la Torre, Concepción Ávila, Francisco M Cánovas. Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity. The Plant journal : for cell and molecular biology. 2016 07; 87(2):215-29. doi: 10.1111/tpj.13195. [PMID: 27125254]
  • Camilla Dornfeld, Alexandra J Weisberg, Ritesh K C, Natalia Dudareva, John G Jelesko, Hiroshi A Maeda. Phylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway. The Plant cell. 2014 Jul; 26(7):3101-14. doi: 10.1105/tpc.114.127407. [PMID: 25070637]
  • Valeriano Dal Cin, Denise M Tieman, Takayuki Tohge, Ryan McQuinn, Ric C H de Vos, Sonia Osorio, Eric A Schmelz, Mark G Taylor, Miriam T Smits-Kroon, Robert C Schuurink, Michel A Haring, James Giovannoni, Alisdair R Fernie, Harry J Klee. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. The Plant cell. 2011 Jul; 23(7):2738-53. doi: 10.1105/tpc.111.086975. [PMID: 21750236]
  • David R Holding, Robert B Meeley, Jan Hazebroek, David Selinger, Fred Gruis, Rudolf Jung, Brian A Larkins. Identification and characterization of the maize arogenate dehydrogenase gene family. Journal of experimental botany. 2010 Aug; 61(13):3663-73. doi: 10.1093/jxb/erq179. [PMID: 20558569]
  • Hiroshi Maeda, Ajit K Shasany, Jennifer Schnepp, Irina Orlova, Goro Taguchi, Bruce R Cooper, David Rhodes, Eran Pichersky, Natalia Dudareva. RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. The Plant cell. 2010 Mar; 22(3):832-49. doi: 10.1105/tpc.109.073247. [PMID: 20215586]
  • Marcello Iriti, Franco Faoro. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. International journal of molecular sciences. 2009 Jul; 10(8):3371-3399. doi: 10.3390/ijms10083371. [PMID: 20111684]
  • Ralf Stracke, Hirofumi Ishihara, Gunnar Huep, Aiko Barsch, Frank Mehrtens, Karsten Niehaus, Bernd Weisshaar. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant journal : for cell and molecular biology. 2007 May; 50(4):660-77. doi: 10.1111/j.1365-313x.2007.03078.x. [PMID: 17419845]
  • Pascal Rippert, Michel Matringe. Purification and kinetic analysis of the two recombinant arogenate dehydrogenase isoforms of Arabidopsis thaliana. European journal of biochemistry. 2002 Oct; 269(19):4753-61. doi: 10.1046/j.1432-1033.2002.03172.x. [PMID: 12354106]
  • Pascal Rippert, Michel Matringe. Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains. Plant molecular biology. 2002 Mar; 48(4):361-8. doi: 10.1023/a:1014018926676. [PMID: 11905963]
  • E Jung, L O Zamir, R A Jensen. Chloroplasts of higher plants synthesize L-phenylalanine via L-arogenate. Proceedings of the National Academy of Sciences of the United States of America. 1986 Oct; 83(19):7231-5. doi: 10.1073/pnas.83.19.7231. [PMID: 3463961]